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Characterization of wave propagation in elastic and elastoplastic granular chains
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For short duration impulse loadings, elastic granular chains are known to support solitary waves, while
elastoplastic chains have recently been shown to exhibit two force decay regimes [Pal, Awasthi, and Geubelle,
Granular Matter 15, 747 (2013).]. In this work, the dynamics of monodisperse elastic and elastoplastic granular
chains under a wide range of loading conditions is studied, and two distinct response regimes are identified
in each of them. In elastic chains, a short loading duration leads to a single solitary wave propagating down
the chain, while a long loading duration leads to the formation of a train of solitary waves. A simple model is
developed to predict the peak force and wave velocity for any loading duration and amplitude. In elastoplastic
chains, wave trains form even for short loading times due to a mechanism distinct from that in elastic chains.
A model based on energy balance predicts the decay rate and transition point between the two decay regimes.
For long loading durations, loading and unloading waves propagate along the chain, and a model is developed to
predict the contact force and particle velocity.
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I. INTRODUCTION

Granular media have potential applications in diverse
fields involving dynamic wave propagation, ranging from
impact wave shielding to determining mechanical properties
of biological materials [1–3]. In the last few decades, extensive
studies have been conducted on the distinct dynamic properties
of these systems. Granular systems are typically composed
of regular or irregular contacting granules [4–6] and have
been extensively modeled as deformable spheres. Shock
fronts [7] or wave trains [8] form under certain loading
conditions.

Most of the studies in the literature have been conducted
on nondissipative elastic spheres to characterize their re-
sponse subjected to various loading conditions. Nesterenko
[9] showed that a chain of unstressed elastic spherical granules
in contact, subjected to an impulse load, transmits a compact
stress wave called solitary wave, with features distinct from
those of waves transmitted in precompressed chains. Wave
trains in contacting elastic granules have been observed in
various studies, starting from the works of Lazaridi and
Nesterenko [8]. Job et al. [10] observed wave trains in granular
chains subjected to impulse loadings in two cases: when the
mass of the striker is large and when there is a change in
radii along the chain. Sokolow et al. [11] conducted similar
studies and noted the absence of a simple relationship between
the amplitudes of various solitary waves in the wave train.
Molinari and Daraio [7] studied the characteristics of periodic
granular chains subjected to a constant velocity at one end and
characterized the quasisteady response of the system using
a homogenized equation and a traveling wave solution. In
the first part of this work, wave propagation in monodisperse
granular chains subjected to short and long duration force
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impulses is studied systematically. The peak contact force
acting on a sphere and the leading wave velocity down a long
chain are obtained. In the long duration case, bounds for the
wave velocity are derived directly from the discrete governing
equations, in contrast with the homogenized approximation or
with the traveling wave approach followed by Molinari and
Daraio [7].

In real systems subjected to high loads, point contacts
between granules lead to stress concentrations causing plastic
deformations, and the effects of plasticity become significant
[12–14]. Pal et al. [12] modeled the effects of plasticity on
wave propagation in granular chains and observed exponential
and inverse force decay regimes along the chain. In other
studies on dissipative elastic crystals [15,16], the dissipation
is associated with the relative motion between particles.
Vergara [16] developed a dissipative model for viscoelastic
spheres in contact by parametrizing the contact law to include
contributions of viscoelasticity and dependence on the square
of relative velocity of contacting spheres. In Ref. [15],
Carretero-Gonzalez et al. modeled dissipation by adding a
power law of relative velocities to the Hertzian law, with
the power law exponent determined from experiments to fit
the simulation data. A key observation from that study is the
existence of secondary waves below a critical exponent.

Most of the studies on wave propagation in granular chains
have been conducted on monodisperse elastic chains. Wave
attenuation has also been observed in chains having varying
radii, due to impedance mismatch along the chain [10,17,18].
Others [19,20] have focused on the dynamics of random
contacting spheres and their force propagation, dispersion, and
attenuation characteristics.

In the second part of this work (Sec. III), the peak contact
force along an elastoplastic chain is characterized for a wide
range of loading conditions. A simplified contact law is used
which captures the phenomenology of nonlinear elastoplastic
models [12,21] and the response is obtained for a wide range of
material properties. Wave propagation and properties for both
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short and long loading times are described and the expressions
for the peak force are obtained from the governing equations
using energy balance and quasisteady state considerations.

II. ELASTIC CHAINS

A. Problem setup

In this section, the dynamic response of a semi-infinite
monodisperse elastic granular chain subjected to a force
impulse at one end is studied. The granular chain is composed
of spherical contacting beads. The dynamic response of this
system can be modeled as a spring-mass system, with the
spheres modeled as point masses and the contact between them
represented by nonlinear springs. These nonlinear springs
follow a contact law based on Hertzian theory for spherical
surfaces in contact [22]. The equation of motion of the ith
sphere is given by

miüi = Fi−1,i(αi−1,i) − Fi,i+1(αi,i+1), (1)

where mi and ui are the mass and displacement of sphere i,
respectively, Fi−1,i is the contact force between granule i and
i − 1 obtained from a contact law, and αi−1,i is the relative
displacement defined by

αi−1,i =
{

ui−1 − ui if ui−1 > ui

0 otherwise.
(2)

The contact force between the elastic spheres is modeled by
the classical Hertzian contact law [22].

For the first sphere, the equation of motion is

m1ü1 = −F1,2
(
α1,2

) + f (t) , (3)

where f (t) is the external force applied to the left of the first
sphere and is given by

f (t) =
{

A if 0 < t � T ,

0 otherwise.
(4)

For a given amplitude A and loading time T , the total impulse
is thus I = AT .

A fourth-order Runge-Kutta scheme is used to solve the
system of coupled ordinary differential equations with a time
step of 5 × 10−9 s. In all simulations, the radii of spheres
are taken to be 4.76 mm and the material properties are
chosen to correspond to brass, with density ρ = 8500 kg/m3,
Young’s modulus E = 115 GPa, and Poisson’s ratio ν = 0.30.
Let E∗ = E/2(1 − ν2) and R∗ = R/2 be the effective stiffness
and effective radii of two identical contacting spheres [22]. The
solutions are presented hereafter in a nondimensional form,
with the force and impulse normalized as

F̃ = F/E∗R∗2
, (5)

Ĩ = I/E∗R∗2
τ, (6)

where τ is the intrinsic time scale associated with the elastic
sphere system,

τ =
√

πρR∗2

4E∗ . (7)
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FIG. 1. (Color online) Transition from single solitary wave to
wave train regime. The solid curve denotes the critical loading time
above which wave trains form. This critical loading time follows
a −1/6 power law with input amplitude. The symbols indicate
numerical simulation values.

The key variables of interest are the peak contact force and
wave velocity along the chain for a wide range of loading
conditions.

B. Single solitary wave versus wave trains

To demonstrate the effect of loading times, the elastic
chain is subjected to different load amplitudes A, with
the total impulse kept fixed at I = 0.40 Ns. The load-
ing times for the two cases are 1 μs (T/τ = 1.29) and
100 μs

(
T/τ = 1.29 × 102

)
, respectively. Similar to the ob-

servations in Ref. [10], where a small (large) impact mass leads
to a shorter (longer) loading time, for a fixed input impulse,
a short loading time results in a single solitary wave, while a
long loading time results in a train of solitary waves down the
chain [8]. The leading solitary wave has the highest amplitude
since the wave velocity depends on the force amplitude with
1/6 power [9].

A systematic study is conducted to determine the transition
from a single solitary wave to a wave train. The loading
amplitude A is kept fixed while the loading time T is increased
from a low value until a transition time is attained when the
response signal breaks into a train of solitary waves down
the chain. The symbols in Fig. 1 show this transition time,
obtained numerically for various loading amplitudes. Two
distinct regimes exist and a power law with exponent −1/6
describes the transition. This implies that for any loading
time T (or amplitude A), there is a transition amplitude A

(or loading time T ) below which a single solitary wave forms
and above which a train of solitary waves forms.

We examined the contact force evolution with time at a few
initial contacts along the chain for both the short T = 1 μs and
long T = 100 μs duration loading cases. In the long loading
duration case, the force evolution at a contact steepens down
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the chain to form multiple distinct solitary waves, while in
the short loading duration case, the contact time increases
down the chain to form a single solitary wave. Due to the
dependence of the wave speed on the force amplitude, there is
an inherent time scale τs of loading at a contact for a solitary
wave, which is a function of the amplitude. If the loading
time at a contact is less than the time scale τs corresponding
to the loading amplitude, the contact time increases and the
amplitude decreases down the chain until a solitary wave
forms, for which the contact time equals the inherent time
scale τs corresponding to the loading amplitude at the contact.
Similarly, if the contact time is longer than the time scale τs for
the corresponding loading amplitude, the amplitude increases,
the contact time decreases, and the wave breaks down the
chain until a leading solitary wave forms. Thus, for a fixed
input impulse, if the time of contact along the chain exceeds
τs , the response breaks into wave trains, each having shorter
contact time, and the peak force increases at contacts down the
chain. On the other hand, if the time of contact is less than τs ,
the contact time increases and the peak force decreases as the
wave progresses down the chain. The system has an inherent
tendency to form solitary waves by appropriately adjusting the
peak force and time of contact. Similar arguments have been
made by Job et al. [10], who observed a transition depending
on the size of the striker impacting the chain. Since the wave
velocity scales with peak force amplitude as F

1/6
p , the inverse

of time scale τs would also follow the same scaling law. Thus
the transition time to wave trains T , which is the contact time
at the first contact, also follows a −1/6 power law with loading
amplitude, as seen earlier in Fig. 1.

C. Model

In this section, a model is developed to predict the peak
contact force and leading wave velocity down an infinitely
long chain, subjected to any constant loading amplitude and
impulse. For sufficiently short loading times, the amplitude
Fp of the solitary wave propagating down the chain depends
only on the input impulse I . This amplitude can be evaluated
by considering the limit of an infinite force acting for zero
time. Indeed, the limiting case is equivalent to the problem of
an initial velocity v0 prescribed to the first sphere. Through
dimensional arguments [2], the peak force of the solitary wave
scales with initial velocity as Fp ∝ v

6/5
0 and, from numerical

experiments, the solution to this problem is determined to be

Fp = 0.719
(
m3E∗2

R∗v6
0

)1/5 = 0.719

(
E∗2

R∗ I 6

m3

)1/5

.

(8)

Next, the response of the system is analyzed for large
loading times. In this case, a train of solitary waves of
decreasing amplitude traverses down the chain. Since the
wave with the highest amplitude is the leading wave, the peak
contact force down an infinite chain is the force due to the
leading solitary wave. To determine this peak force, consider
a chain subjected to a long loading time of T = 10 ms and
A = 40 N. The contact force and sphere velocity distribution
at time t = 100 ms are plotted in Fig. 2, showing two regimes:
a constant force and velocity regime near the point of loading
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FIG. 2. (Color online) Contact force and bead velocity snapshots
along the chain for a long loading time. Two regimes are seen: at
the left end, the contact force and sphere velocity are constant, while
at the right end, there are distinct waves. The solid curve in the top
figure denotes the peak force achieved at every contact.

and a solitary wavelike regime at the leading edge. It is noted
that there is a transition between the two regimes and the
solitary waves at the leading front have not fully formed and
started detaching yet. The waves at the leading front start to
detach after loading stops, and we observe from numerical
experiments that the peak force of the leading solitary wave is
almost equal to the peak force at the leading front of the wave
sufficiently down the chain. The solid curve in Fig. 2 shows
the peak contact force, and although it continues to increase
as noted in Ref. [9] for a related problem, the rate of increase
is small and the peak force can be considered constant.

To determine the upper bound on the peak force, a simplified
model is considered based on two regimes: a leading regime
consisting of solitary waves and a trailing regime having a
constant force and velocity with a sharp transition between
them. In the trailing regime, the spheres move with a constant
velocity v, and hence the bead displacement is given by

u (x,t) = U (x) +
(

t − x

ct

)
v, x < ct t, (9)

where ct is the speed of the transition point and U (x) is
the bead displacement after the leading regime has passed
x. Noting that the virial due to the above expression and in
a solitary wave are constant, the kinetic K and potential P

energy are related by the virial theorem as 4K = 5P , which is
found to be in excellent agreement with numerical simulations.

Let the leading front be moving with a velocity c and the
solitary wave at the front have a corresponding peak contact
force Fp. To evaluate the velocity of the spheres in the constant
regime, we assume a quasisteady state of the front, wherein
adjacent contacts have the same force histories, but are shifted
by the time taken for the front to propagate a bead diameter.
This leads to the following relation between the contact forces
FL and FR acting on the left and right of a sphere, respectively:

FR (t) = FL

(
t − 2R

c

)
. (10)
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Integrating the equation of motion of the sphere and noting that
FR(t) = FL(t) = A when the bead is in the constant regime
leads to the following relation for the bead velocity:∫ ∞

0
m

dv

dt
dt =

∫ ∞

0
(FL − FR) dt (11)

⇒ mv = 2RA

c
. (12)

Finally, to evaluate the speed of the leading front, an energy
balance in a time interval �t leads to

Av�t = �P + �K = 9
4�P. (13)

Assuming that the force distribution and hence the energy
in the solitary wave regime remain constant, all of the input
energy in this time interval goes to the constant force regime.
Since the contact force is constant in the first regime, Eq. (13)
becomes

Av�t = 9

4

(
2A5/3

5k2/3

)
c�t

2R
, (14)

where the bracketed term is the potential energy at a contact
having a force amplitude A and k = 4E∗√R∗/3 is the constant
defining the elastic contact. Using (12) leads to the following
expression for an upper bound of the front velocity:

cu =
√

10A1/3k2/3D2

9m
. (15)

To evaluate a lower bound, consider the contact force acting
on a spring between beads i − 1 and i, given by Hertz law as

F = k (ui−1 − ui)
3/2 . (16)

Differentiating (16), the relative velocity is given by

u̇i−1 − u̇i = d

dt

(
F

k

)2/3

. (17)

Integrating (17) between t = 0 and t → ∞ and again using
quasisteady considerations, i.e., vi(t) = vi−1(t − 2R/c), leads
to

2vR

c
=

(
A

k

)2/3

. (18)

Combining (12) and (18), we get a lower bound of velocity c

of the front

cl =
√

A1/3k2/3D2

m
. (19)

The lower and upper values of wave speed given by the
above expressions are cl = 668.0 m/s and cu = 704.0 m/s.
Using Nesterenko’s solution [9] for a solitary wave gives the
upper and lower bound on peak force values, Fu

p = 107.2 N
and F l

p = 78.15 N. Comparing to the numerical values of
wave velocity c = 687.2 m/s and peak force Fp = 92.7 N, we
note a 3% and a 15% error in wave velocity and peak force,
respectively. This difference arises due to the assumption that
the entire energy input goes to the first regime. However, in
numerical simulations, a careful observation reveals that the
energy per unit length of chain is higher in the solitary wave
regime than in the constant force regime, and there is a transfer

of energy between the two regimes. Hence, the potential energy
expression used in Eq. (14) is slightly lower than the total
potential energy input to the system, and thus it is clear that
the predicted force and wave velocity are indeed upper bounds
on the exact values.

For long loading times leading to the formation of wave
trains, the above analysis shows that the peak force of the
leading solitary wave scales linearly with the input amplitude
(Fp ∼ c6 ∼ A), while in the single solitary wave regime,
dimensional arguments show that the peak force scales with
impulse as F ∼ I 6/5. Figure 3(a) shows the variation of
peak contact force (F̃p = Fp/E∗R∗2) with loading amplitude
(Ã = A/E∗R∗2) down a long chain for distinct impulses. Two
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FIG. 3. (Color online) (a) Peak contact force for varying am-
plitudes and loading times, with each curve corresponding to a
fixed impulse. (b) When normalized appropriately, the response
collapses to a single curve. Two regimes are observed: the constant
force corresponds to a single solitary wave, while the other regime
corresponds to wave trains.
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response regimes are observed: in the wave train regime, the
peak force increases with amplitude of input force and is
independent of I , while in the single solitary wave regime, the
peak force is independent of the loading amplitude. Indeed,
as observed in Fig. 3(b), the appropriate normalizations lead
to the distinct responses collapsing to a single “master” curve.
This normalized curve allows one to predict the peak contact
force down a long elastic chain for any impulse, amplitude, and
duration of step loading. For short loading times, the response
is only a function of the form of the total impulse and does
not depend on the form of the loading function, while for long
loading times, the peak force is a function of loading amplitude
only and independent of the loading duration or impulse.

III. ELASTOPLASTIC CHAINS

We now turn our attention to wave propagation in elastic-
perfectly plastic granular chains for a wide range of loading
durations. Two force-displacement models are considered in
this work: the first is a simple bilinear model following Walton
and Braun [23] and the second is a more accurate elastoplastic
contact model due to Pal et al. [12]. Both models are shown
in Fig. 4. The simpler bilinear model allows for the capture
of the key contributions of the material-induced dissipation
on the dynamic response of the elastoplastic chain, while the
second, more complex contact model provides a more accurate
quantitative description of the system, especially with regard
to the elastic unloading and reloading. Two parameters define
the bilinear model: the stiffness k associated with plastic
loading and the unloading coefficient β < 1, which is the
ratio of the residual displacement upon complete unloading
to the maximum displacement previously achieved, i.e., the
displacement at the start of unloading. The contact stiffness
during unloading is the slope of the unloading curve ku =
k/(1 − β). The energy dissipated at a contact for which a peak
force F has been attained is the difference in areas between
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FIG. 4. (Color online) Two contact force-displacement laws for
elastoplastic spheres. The simpler bilinear model is defined by two
parameters: stiffness in plastic loading k and ratio of residual to
maximum displacement, β = 1 − k/ku. Fy and αy denote the contact
force and relative displacement at the onset of yield.

the associated loading and unloading curves and is given by

Edis =
∫ αmax

0
(Fload − Funload) dα

= F 2

2

(
1

k
− 1

ku

)
= β

2k(1 − β)
F 2, (20)

where αmax is the maximum displacement corresponding to
the force F . In this work, the plastic loading stiffness is set
as k = 18.5σyR

∗, with σy being the yield strength, to match
the stiffness in plastic loading for large forces in the Pal
model [12]. The dynamic response of a semi-infinite chain
is studied for short and long duration loading times since, as
demonstrated hereafter, the wave characteristics and contact
forces along the chain are very different for these two loading
conditions.

A. Short loading times

1. Wave characteristics

In this section, the contact force along the chain and its
decay rate are characterized for the simpler, bilinear contact
law. As shown in Pal et al. [12], for short loading times,
elastoplastic chains have distinct characteristics, including
wave merging and interaction, and rapid decay in peak force
and energy dissipation along the chain. In that study, two
regimes of spatial force decay were observed: exponential
decay over the first few beads followed by an inverse
decay. Furthermore, that study showed that after appropriate
normalizations, the dynamic response of elastoplastic systems
is identical for any impulse and short loading times.

The second regime of force decay starts when the trailing
waves begin to cause dissipation at a contact, i.e., when the
peak force due to the trailing wave is higher than the force
previously attained due to the leading wave. Figure 5 shows
the contact force and bead velocity history of the first few beads
in an elastoplastic chain (β = 0.80) subjected to an impulse
I = 0.1 Ns for a loading time T = 1 μs. For an elastic system
subjected to such an impulse, the first few beads end up moving
to the left following the initial impact events [24]. However, in
the presence of plastic dissipation, we observe in Fig. 5(b) that
the beads continue to move to the right. Due to higher stiffness
and hence higher wave speeds during unloading, the decrease
in contact force during unloading is much steeper than the
increase during plastic loading [Fig. 5(a)]. This effect causes
a lower impulse to be transmitted to the bead on the right.
The momentum imparted to a bead, mv = ∫

(FL − FR)dt , is
thus positive and the bead has a net residual velocity to the
right after the leading wave has passed. Since there is energy
dissipation at each contact, the net impulse transferred through
the beads also decreases along the chain. Indeed, the residual
velocity of beads and contact forces also decrease down the
chain. As apparent in Fig. 5(b), the beads are initially in free
flight and then collide, leading to secondary waves. This is in
sharp contrast to the creation of secondary waves in elastic
chains caused by wave steepening, as described previously in
Sec. II B. Collisions between beads behind the leading wave
cause contact forces, which can produce additional dissipation.
To determine the point at which the transition happens, we first
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FIG. 5. (Color online) Time evolution of the contact force and
bead velocity for the first few beads in an elastoplastic chain.
Secondary waves behind the leading wave are caused by collisions
of beads in free flight.

derive the spatial dependence of the peak contact force and
residual velocity along the chain.

2. Exponential decay regime

In the first regime, a leading wave travels down the
chain, causing an exponential decay in peak contact force.
To derive the expression of that decay for the case of a bilinear
elastoplastic contact law, we use an energy balance between the
instants at which two adjacent contacts attain their respective
peak force:

Edis
�t = Etot

t − Etot
t+�t , (21)

where Edis
�t is the energy dissipated in a time interval �t and

Etot
t is the sum of kinetic and potential energies over the entire

chain at time t .
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FIG. 6. (Color online) Force decay of the first few beads for short
loading times. The peak force obtained numerically (circles) is well
predicted by the analytical model (solid curve). Also shown is the
leading wave profile (histogram) at the instant the second contact
attains its peak force.

We now construct approximations for the various compo-
nents of Eq. (21) as the leading wave propagates down the
chain. At a contact, the potential energy is the area under
the unloading curve and is a quadratic function of the force.
Figure 6 shows the contact forces at the time instant when
the second contact reaches its peak force. Let us assume
that the leading wave has a self-similar structure, i.e., that
the force at the contact ahead Fa is a fraction of the peak
contact force (Fa = ηF ). Due to the bilinear nature of the
contact law and the assumption of self-similar structure of the
leading wave, the wave velocity, the time taken by the wave
to traverse a bead, and thus the contact time Tc on a bead are
constant. From dimensional arguments, the bead velocity vm

at the instant of peak contact force scales linearly with F , as
vm/Tc ∼ (F − Fa) ∼ F and thus vm ∼ F . Similarly the free
flight residual velocity vr of the bead to the left of contact also
scales as the peak contact force. Using the procedure described
in the Appendix, the bead velocity v, contact force ahead Fa ,
and residual velocity of the bead vr are related to the peak
force F by

Fa = ηF, vm = γF, vr = ωF, (22)

where γ,η,ω are functions of material properties.
Though the leading wave spans four bead diameters and

three contacts (Fig. 6), the contributions of potential energy due
only to the two contacts having higher forces are considered
to compute the total energy. Similarly, the velocity vm of two
beads whose contact force is maximum are considered for
kinetic energy, while the remaining bead velocities and contact
force, having small values, are neglected. When the force at a
contact is maximum, the relative velocity of the beads at that
contact is zero.
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The total kinetic K and potential P energy components due
to the leading wave are thus

K ≈ 2

(
1

2

)
mv2

m = mγ 2F 2, P ≈ 1

2ku

(F 2 + η2F 2). (23)

Let the peak contact force at two adjacent contacts distance x

and x + dx be F and F + dF , respectively, and let �t be the
time interval between the times when the two adjacent contacts
attain their respective peak forces. The energy dissipated in the
time interval �t as the peak force is attained at two adjacent
contacts is

E�t
dis = 1

2

(
1

ku

− 1

k

)
[F 2 + (1 + η2)(2FdF + dF 2)]. (24)

Substituting these expressions into the energy balance
[Eq. (21)] and accounting for the kinetic energy due to residual
velocity vr leads to

[(dF )2 + 2FdF ]

[
1 + η2

2k
+ mγ 2

]

+F 2

[
1

2

(
1

k
− 1

ku

)
+ 1

2
mω2

]
= 0. (25)

Noting that energy dissipation takes place at discrete locations
along the chain separated by a distance D, we obtain the
following differential equation:[ (

D
dF

dx

)2

+ 2DF
dF

dx

] [
1 + η2

2k
+ mγ 2

]

+F 2

[
1

2

(
1

k
− 1

ku

)
+ 1

2
mω2

]
= 0, (26)

whose solution is

F (x) = exp

⎡
⎣−x

D
+ x

D

√√√√1 − D

(
1
k

− 1
ku

+ mω2
)

( 1+η2

k
+ 2mγ 2

)
⎤
⎦ . (27)

Figure 6 shows the comparison between the numerical
solution (symbols) and approximation [Eq. (27)] for the peak
force along the initial part of the chain. The difference between
the numerical solution and analytical approximation arises
due to the assumption of self-similar wave structure, whereas
in numerical simulations, the bead velocity and force at
the contact ahead also exhibit small variations with time of
loading. The difference between the predicted peak contact
force and that obtained numerically is found to be around
10%.

3. Transition and inverse decay regime

The exponential decay regime ends when the contact force
associated with trailing secondary waves is higher than that
attained by the leading wave. As observed earlier (Fig. 5),
secondary waves are caused by collisions of beads in free
flight. From Eq. (22) and Fig. 5(b), we observe that the residual
velocities of beads behind the leading wave scale with the
peak force, and hence decrease down the chain. Eventually,
these beads collide, causing secondary waves, which can
be modeled as independent collisions between beads. To
determine the peak force evolution of these secondary waves,
we first determine the peak contact force between two beads

in free flight having relative velocity �v and operating in the
elastic reloading regime of the force-displacement law. For the
bilinear law, following Johnson [22], the relative displacement
α satisfies the equation

mα̈ + 2kuα = 0, (28)

and the peak contact force between them is given by

Fs = kuα =
√

kum/2�v. (29)

When two beads of equal masses following a nondissipative
contact law collide, it is well known that their velocities
interchange. Collisions between the beads in free flight lead
to the contact forces in secondary waves, whose magnitude
scales with the difference in velocities �v. Since the residual
velocity decreases down the chain (vt = ωF ), this leads to a
corresponding increase of the contact forces due to collisions,
and a simple model is constructed to predict the peak force due
to these collisions. Assuming that the collisions occur in order
and are independent, the peak force due to secondary waves,
based on Eq. (22), is given by

F i
s =

√
kum/2�vi =

√
kum

2

�F i

ω
, (30)

where �F i is the difference in peak force attained at the first
contact and the (i + 1)th contact.

The solid and dashed curves in Fig. 7 respectively show
the approximate spatial variation of the leading (27) and
secondary (30) waves for three distinct values of unloading
coefficient β. The corresponding numerical values of the peak
force are denoted by symbols. The intersections between these
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FIG. 7. (Color online) Spatial variation of peak contact force
along the chain for three distinct unloading parameters β. The
symbols denote numerical results, while the solid and dashed curves,
respectively, show the decay predicted by the model [Eq. (27)] and the
peak force due to secondary waves. Their intersection point (dotted
vertical arrow) is the start of the transition from exponential to power
law decay regimes. The circles on the x axis denote the transition
points obtained numerically.
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FIG. 8. (Color online) Bead velocity distribution along the chain
at three time instants for a short loading time, T = 1 μs. In the inverse
regime, the velocity distribution is almost uniform.

two sets of curves (emphasized by the dotted vertical arrows)
provide estimates of the transition points between exponential
and inverse decay regimes. For these three values of β, the
numerical simulations give these transition points to be at
the third, fifth, and ninth contact points, respectively, and are
shown circled on the x axis in Fig. 7. These transition points
are relatively well predicted by the model, with the difference
due primarily to the assumption behind the prediction of the
peak force of the leading wave.

As demonstrated in Ref. [12], the peak force decays in-
versely with distance in the second regime. Figure 8 shows the
sphere velocity distribution along the chain in the inverse decay
regime at three time instants for the bilinear material model
with β = 0.90. As apparent there, the velocity distribution is
almost uniform along the chain. Furthermore, from numerical
simulations, we observe that most of the energy is associated
with the kinetic energy of the spheres along the chain, while
the total potential energy remains very small. A simple model
based on energy balance is then constructed, assuming that the
potential energy is negligible and that the velocity of spheres
is uniform along the chain. The energy dissipated Edis as the
wave travels a distance �x is then the difference in total kinetic
energy,

Edis (�x) = 1
2mv2x̄ − 1

2m (v + �v) (x̄ + �x̄) , (31)

where x̄ = x/D is the number of beads in a distance x. Using
Eq. (20), assuming quasisteady conditions [Eq. (12)] in the
time interval �t and noting that the velocity in the loading
regime c = √

k/m for the bilinear law, Eq. (31) simplifies to(
1

k
− 1

ku

)
F 2�x = −F 2

k
�x − 2F

k
x�F. (32)

Replacing the difference operators by differentials leads to

dF

dx
+

(
1 + β

2

)
F

x
= 0, (33)

and its solution is given by

F =
(

a

x

)(1+β)/2

, (34)

where a is a constant of integration. For values of β close to
unity, the force is thus predicted to decay as an inverse power
law with distance along the chain.

B. Long loading times

Finally, the behavior of elastoplastic chains subjected to
impulses with long loading times and constant loading force is
studied and expressions for the force and velocity of the system
are developed. A monodisperse elastoplastic chain following
a bilinear force-displacement law with unloading coefficient
β = 0.80 is subjected to the loading conditions in Eq. (4) with
loading time T = 2.5 ms and amplitude A = 8 kN. We first
discuss the qualitative features of the wave structure and then
construct a model for predicting the peak contact forces and
particle velocities.

Figure 9 shows the distribution of contact force and
bead velocity at three different time instants, along with the
distribution of peak contact force attained along the chain.
The distributions are seen to be qualitatively distinct at the
three instants, having uniform values in certain regions with
sharp transitions (wave fronts) along the chain. At early times
(t = 2 ms in Fig. 9), when the chain is still under external
loading, a single wave front travels to the right. After the
loading stops (t = 3 ms), a trailing unloading wave travels
from the left end. The beads behind this trailing wave have
a lower velocity than the beads ahead of it, and the contacts
have zero force behind the trailing wave front. As the force
reduces from the constant value F1 to zero in the contacts
traversing the trailing wave front, these contacts operate in
the steeper unloading part of the contact force-displacement
law. Thus, this wave front has a higher velocity and eventually
collides with the leading wave. After the collision of wave
fronts, there is a decrease in the peak force of the leading wave
and two wave fronts move in opposite directions, as shown
by the results, corresponding to time t = 5.2 ms. The wave
front traveling to the left is reflected at the free end and again
travels to the right with the same amplitude, until it collides
again with the leading wave front. This process continues
indefinitely, with the trailing wave front being reflected from
the free end and colliding with the leading wave front. The
leading wave front always operates in the plastic loading part
of the force-displacement law, while the trailing wave front
always operates in the elastic unloading and reloading part.
The amplitudes decrease progressively with each collision, as
the energy gets distributed over a longer part of the chain. It is
observed that the peak force in the first few contacts is higher
than the constant value attained later. The peak force reaches
a higher value than the amplitude A due to inertial effects in
these contacts. In the remainder of this section, expressions for
the steady contact forces and velocity of beads along the chain
are derived and the point of transition when the wave fronts
collide and the contact force drops is determined. In this work,
the analysis is presented until the end of the first collision,
although the procedure used here can be applied to determine
the amplitudes after subsequent interactions.
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FIG. 9. (Color online) Force and velocity distribution along the
chain for long loading time at three time instants. At t = 2 ms, a
single wave moves to the right, while at t = 3 ms, two waves are
moving to the right. Finally, at t = 5.2 ms, two waves are moving in
opposite directions.

Along an elastoplastic chain following the bilinear law, the
leading wave travels with a speed c = D

√
k/m as it operates

in the plastic loading regime of the force-displacement law. To
evaluate the velocity of the beads, consider a bead down the
chain, in contact with two beads, which exert contact forces
FL(t) and FR(t) from the left and right side, respectively.
Consider a time instant just after the leading wave has crossed
this bead. The bead has attained a constant velocity v1, and
the left and right contacts have a constant force F1. Similar to
the elastic case, assuming a quasisteady response between two
adjacent contacts, i.e., FR(t) = FL(t − c/2R), and integrating
the equation of motion until this time instant leads to the
following relation for the bead velocity:

mv1 = 2F1R

c
. (35)

After loading stops, a trailing wave starts from the first
bead and merges with the leading wave. Since the beads in
contact operate in the unloading regime as the trailing wave
passes, the speed of the trailing wave cu is given by the slope
of the unloading curve in the force-displacement law and is
higher than the leading wave velocity c. The trailing wave
causes the contact forces to go down to zero behind it and
the particle velocities go down to vt . Again, integrating the
equation of motion until a time instant just after the passage
of this trailing wave gives the bead velocity in this region
as vt = v1 − 2F1R/cu. The transition distance xt and time
Tt when the trailing wave merges with the leading wave are
given by

xt = T

(
1

c
− 1

cu

)−1

, Tt = xt/c. (36)

The merging of leading and trailing waves leads to a
decrease in the peak contact force and velocity of the beads,
and two wave fronts move in opposite directions. The wave
front moving to the right operates in the plastic loading regime,
while the wave front moving to the left operates in the elastic
reloading regime. It is noted that all of the beads are moving
to the right, and the left wave front is formed by the collision
of left beads with the right beads, which move with a lower
velocity. Again, assuming a quasisteady state and integrating
the equations of motion of two beads, one ahead of and the
other behind the transition point from Tt until a time instant
after the passage of both the wave fronts across these two
beads, leads to

m (v2 − vt ) = −F2
2R

cu

, m (v2 − 0) = F2
2R

cu

. (37)

Solving the above system leads to the following expressions
for the peak force and bead velocity:

F2 = mvt

D

(
1

c
+ 1

cu

)−1

, v2 = vt

(
1 + c

cu

)−1

. (38)

Finally, it is noted that although the peak contact force in
the first regime is a function of the unloading parameter β,
the steady state force F1 decreases gradually to reach the input
amplitude A. Table I presents a comparison of various variables
computed using the above expressions with values extracted
from numerical simulations for a loading amplitude A = 8 kN
and impulse I = 20 Ns. A good agreement is observed. This
model can easily be extended to predict the peak force, wave,
and particle velocity along the chain for any impulse and

TABLE I. Comparison of predicted values with numerical simu-
lations for material with β = 0.80.

Variable Numerical Predicted

v1 ( m/s) 26.4 26.18
vt ( m/s) 14.6 14.47
v2 ( m/s) 14.5–15 14.84
F2 ( N) 3060 3056
xt ( m) 0.333 0.342
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long times of loading, beyond the first interaction of wave
fronts.

IV. CONCLUSIONS

In this paper, a systematic study has been performed
on wave propagation in monodisperse semi-infinite elastic
and elastoplastic chains subjected to short and long duration
loadings, and expressions for the force and velocity of the wave
have been determined using simple models and appropriate
approximations. In the elastic case, the response is a function
of the input impulse and time of loading. Two distinct regimes
have been observed and identified, with the peak force of
the leading solitary wave determined for both regimes. The
analytical predictions have been found to be in good agreement
with numerical simulations.

In elastoplastic granular chains, the mechanism of wave
train formation is very distinct from its elastic counterpart.
A simple bilinear model has been shown to capture the key
phenomena associated with a more complex nonlinear model.
The peak force decay rates in the exponential regime have
been derived based on the bilinear model. Furthermore, the
transition point has been predicted by determining forces due
to secondary waves and compared with numerical simulations.
The response is distinct for long loading times and a wave
structure having a quasisteady front has been observed.
The structure of the wave has been characterized using the
quasisteady approximation and a simple model has been
constructed to predict these quantities. The model predicts
the contact force, wave, and particle velocity with good
accuracy.
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APPENDIX: LEADING WAVE STRUCTURE IN
ELASTOPLASTIC CHAIN

To compute the total energy of the leading wave in
the exponential decay regime, the velocities of the spheres
supporting this wave and the contact forces between them
(shown by histograms in Fig. 6) are determined in terms of the
peak contact force Fp. All expressions are derived at the time
instant a contact attains the peak force. The contact associated
with the peak force and the contacts ahead operate only in
the plastic loading regime and hence the contact forces and
velocity of spheres are functions of k and m only and do not
depend on the unloading law of the elastoplastic material. The
expressions for Fp, the force on second contact F2, and the
velocity of the first two spheres vm are derived by considering a
series of linear spring mass system having mass m and stiffness
k, respectively, and with the left end of the first mass subjected
to an impulse I . They are given by

vm = 0.482
I

m
, (A1)

Fp = 0.721

√
k

m
I, (A2)

F2 = 0.199

√
k

m
I. (A3)

The trailing wave velocity depends on the unloading
coefficient β. The following relation is obtained for the
trailing velocity vt :

vt = vm − 0.599
√

1 − β
I

m
, (A4)

and is found to be in excellent agreement with the numerical
values. Using the above relations, the maximum vm and
trailing vt velocities of the two spheres and the contact force
F2 are expressed in terms of the peak contact force Fp in the
leading wave.
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