
International Journal of Mechanical Sciences 281 (2024) 109503 

A
0
n

Contents lists available at ScienceDirect

International Journal of Mechanical Sciences

journal homepage: www.elsevier.com/locate/ijmecsci

Topological bound modes in phononic lattices with nonlocal interactions
V.F. Dal Poggetto a,∗, R.K. Pal b, N.M. Pugno c,d, M. Miniaci a,∗

a Univ. Lille, CNRS, Centrale Lille, Junia, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d’Electronique de Microélectronique et de
Nanotechnologie, F-59000 Lille, France
b Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506, USA
c Laboratory for Bio-inspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of
Trento, 38123 Trento, Italy
d School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom

A R T I C L E I N F O

Keywords:
Elastic waves
Acoustic waveguides
Phononic crystals
Topological mechanics
Bound modes
Localized state

A B S T R A C T

Topological protection has opened new possibilities for unconventional wave guiding, object cloaking,
improved energy transport, as well as surface, edge, or corner mode localization. In elasticity, these phenomena
have largely been explored and exemplified through discrete models having nearest neighbor couplings.
Interactions beyond the nearest neighbors in one-dimensional studies, on the other hand, have recently shown
great potential for topological wave phenomena.
In this work we investigate the topological modes of a two-dimensional mass–spring hexagonal lattice with
connections between both nearest and third nearest neighboring masses. We show that non-nearest connections
allow for (i) the formation of additional Dirac cones and (ii) a migration in their location in the reciprocal
space as a function of the relative stiffness between nearest and third nearest neighbor connections. These
additional Dirac cones are linked to a corresponding increase in the number of topological edge modes,
which hybridize and result in bound modes at interfaces between lattices that are inverted copies of each
other. Explicit expressions for the mode shapes and frequencies of these bound modes are derived and their
topological origin is elucidated. We also demonstrate that by varying the relative stiffness between nearest
and third nearest neighbor connections, bound modes lying in the band gap can be achieved. While in the
case of only nearest neighbor connections the bound modes are at a fixed frequency in the pass band, varying
the stiffness of a single nonlocal spring can shift their frequency and isolate them as desired within a band
gap. Transient numerical simulations conducted on a finite lattice allow to quantify the confinement along the
transverse direction as a wave propagates in a waveguide with sharp turns, reporting negligible backscattering.
Finally, a possible realization of hexagonal unit cells with third nearest neighbor connections is proposed.
The concepts here presented open novel avenues for topological wave guiding and confinement leveraging
bound modes to design waveguides with superior energy localization potential.
1. Introduction

The study of wave localization has attracted the interest of re-
searchers for a long time across different domains, from optics to
microwaves, electromagnetism, acoustics, and elasticity [1–5]. In the
last decade, this field gained a renewed interest thanks to the introduc-
tion of the concept of topological protection [6,7], which paved the
way towards unconventional wave guiding [8], object cloaking [9],
improved energy transport and harvesting [10], as well as surface,
edge, or corner mode localization [11,12]. Topological protection guar-
antees wave confinement (or guiding) through symmetry and topology
properties of dispersion surfaces, even in the presence of structural per-
turbations, such as geometrical and material changes or disorders [13,
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14]. Originally proposed in the field of quantum mechanics [15], topo-
logical protection has successively inspired the quest for its analogue
in other research domains, including elastodynamics, where, however,
Poisson’s effect and both the presence and hybridization of longitudinal
and shear waves made the parallel harder to be obtained [16–19]. In
particular, elastic metamaterials, i.e., structured materials that exhibit
unconventional wave-controlling properties [20–23], have been used
as prompt candidates for the aforementioned quest [24–26].

In elasticity, topological protection can be achieved (i) by break-
ing the time-reversal symmetry using active components, like rotating
gyroscopes [27,28] or active fluids [29], or (ii) via solely passive
components, requiring only the spatial symmetry of the unit cell to
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be broken [30,31]. In the latter case, which is the focus of this paper,
lattices of masses and springs are an ideal playground to explore the
aforementioned analogues [32,33].

In this context, Süsstrunk and Huber realized the mechanical ana-
logue of the quantum spin Hall effect [34–37] via a double pendulum
array with sophisticated connections, observing the propagation of
waves along edges and their immunity to back-scattering at sharp
corners [38]. Pal et al. proposed a theoretical framework to achieve
elastic helical edge modes by connecting two identical hexagonal mass–
spring lattices through inter-layer couplings that broke the double Dirac
cone degeneracy [39]. Considering the quantum valley Hall effect [40–
43], the requirement of nontrivial topology of the band structure can be
relaxed and pursued only in correspondence with the valleys at the high
symmetry points of the reciprocal lattice. This may lead to a reduction
of the unit cell complexity, but at the same time to a less robust
protection due to potential inter-valley scattering. Vila et al. observed
topologically protected valley edge waves in an elastic hexagonal lattice
adding unequal masses at the hexagon vertices [44], while Pal and
Ruzzenne reported this effect in a plate-like structure with a hexagonal
arrangement of spring–mass resonators [45], and Chen et al. predicted
such phenomena by arranging masses and springs into a Kagome-like
lattice [46]. Zhou et al. explored the variation of the inter- and intra-
unit cell spring constants to tune and invert the band structure in a
hexagonal lattice [47], while Chen et al. analytically explored the po-
tential of gathering all the aforementioned elastic topological analogues
into a unified mass–spring honeycomb lattice [48]. An et al. showed
how to selectively activate the localization of waves at corners by
engineering the positions of the valleys in the dispersion diagram [49].

Finally, another category of localized modes, accidental or symmetry
protected, referred to as bound modes in literature [50–53], has emerged
in the field of elasticity in recent years. Bound modes are ideally
capable of perfect wave confinement, i.e., achieving a wave amplitude
that decays to zero in an extremely compact spatial region, regardless
if they reside within a band gap or a pass-band [54], thus yielding
extremely high quality factors. Rahman and Pal introduced a rationale
to induce bound modes in a one-dimensional mass–spring system by
adding defects exploiting reflection symmetry [55]. Their existence
has been successively observed in a slender beam with rigid masses
attached at periodic intervals. A bounded compact segment with four
additional protruding side beams nullifies the forces and moments out-
side the target region [56]. Other notable works include the observation
of bound modes at the edges of elastic plates for waves incident at a
specific angle [57,58], whereas Haq et al. proposed an elastic structure
made of thin (sub-wavelength) cylindrical scatterers embedded in a
background material and arranged into a doubly periodic array [59].

Most of the aforementioned wave phenomena have been explored
and exemplified through discrete models accounting for each mass
to interact with the nearest neighboring mass. However, interactions
beyond the nearest neighbors present great potential for richer topo-
logical mechanics. Accounting for non-nearest neighboring interaction
of masses has allowed the observation of roton-like dispersion rela-
tions in elasticity [60–63], as well as to go beyond the conventional
winding numbers in one-dimensional topologically protected mass–
spring chains [46]. The existence of multiple localized modes with
a topological origin, identified by the number of Dirac points in the
Brillouin zone, has been reported recently [64]. Grundmann theo-
retically analyzed the evolution of topological effects arising from
the interaction of masses located at the nearest, second nearest, and
third nearest neighbor in diatomic linear elastic chains, reporting two
topologically distinct modes by varying the spring constants when
only the nearest neighboring masses were connected. No substan-
tial topological changes occurred when the next-nearest neighboring
masses were coupled through additional springs, whereas two addi-
tional distinct topological modes were observed when coupling the
third nearest masses [65]. Betancur-Ocampo et al. predicted, theo-

retically and numerically, that connecting third nearest neighboring
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masses can induce topological phase transitions in one-dimensional
lattices [66]. Finally, Wang and Wang have proposed active meth-
ods to control elastic wave propagation by manipulating topological
modes considering nonlocal interactions [67,68], using both numerical
calculations and experiments.

Apart from pioneering studies limited to one-dimensional cases,
when a two-dimensional lattice is concerned, most of the works cur-
rently available in the literature are limited to mass–spring systems
where only the nearest neighboring interaction of the masses is con-
sidered. To address this gap, we investigate the topological models of a
mass–spring hexagonal lattice with springs connecting both the nearest
and third nearest neighboring masses. We demonstrate the possibility
of forming multiple Dirac cones traversing the reciprocal lattice as
the relative stiffness between the two sets of springs (connecting the
nearest and third nearest masses) changes. Then, inversion symmetry
is broken in the unit cell considering interfaces between two lattices
that are inverted copies of each other. We show that the connection of
non-neighboring masses allows for the nucleation and tuning of addi-
tional Dirac cones in correspondence with the high symmetry points
K (K′) when compared to the case of hexagonal lattices where only
neighboring masses are connected. An increase in the number of Dirac
cones leads to a corresponding increase in the number of topological
edge modes, with these edge modes hybridizing and leading to bound
modes when finite strips are considered. Explicit expressions are given
for the existence of bound modes at the interface and their topological
origin is elucidated. Finally, numerical simulations on a finite lattice
are conducted to determine the extent of the confinement along the
transverse direction as a wave propagates in a waveguide with sharp
turns.

The outline of this paper is as follows. Section 2 describes the dis-
crete lattice and derives its dispersion relations. Section 3 presents the
investigation of the topological invariants associated with Dirac cones
and singularity points in the reciprocal space. Section 4 describes the
derivations concerning the existence of bound modes, while transient
numerical simulations considering a finite structure are reported in
Section 5. Finally, conclusions are drawn in Section 6.

2. Lattice description and dispersion analysis

The theoretical model used to calculate the dispersion diagrams and
wave propagation properties of the considered structures are reported
in this section. Fig. 1a shows pairs of unequal masses denoted as 𝑚𝑎 (in
lue) and 𝑚𝑏 (in yellow) arranged into a hexagonal lattice described
y the direct vectors 𝐚1 = {𝑎, 0}𝑇 and 𝐚2 =

{

𝑎∕2, 𝑎
√

3∕2
}𝑇

, where
𝑎 is the spacing between adjacent unit cells. Each mass presents only
one degree of freedom, corresponding to an out-of-plane displacement.
The nearest neighboring masses are connected by springs of stiffness
𝑘1 (continuous black line), while third nearest neighboring masses are
connected by springs of stiffness 𝑘2 (dashed green, purple, orange, and
blue lines). The periodic structure can then be obtained by shifting the
unit cell, highlighted by the light blue parallelogram,

{

𝑛1, 𝑛2
}

∈ Z2

times in the
{

𝐚1, 𝐚2
}

directions, respectively.
Denoting 𝑣(𝑛1 ,𝑛2)𝑝 as the displacements of mass 𝑝 = {𝑎, 𝑏} in the unit

cell with integer indices (𝑛1, 𝑛2), the equilibrium of masses 𝑚𝑎 and 𝑚𝑏
at the base unit cell (0, 0) yields

𝑚𝑎�̈�
(0,0)
𝑎 = 𝑘1(𝑣

(0,0)
𝑏 − 𝑣(0,0)𝑎 ) + 𝑘1(𝑣

(−1,0)
𝑏 − 𝑣(0,0)𝑎 ) + 𝑘1(𝑣

(0,−1)
𝑏 − 𝑣(0,0)𝑎 )

+ 𝑘2(𝑣
(−1,−1)
𝑏 − 𝑣(0,0)𝑎 ) + 𝑘2(𝑣

(−1,1)
𝑏 − 𝑣(0,0)𝑎 ) + 𝑘2(𝑣

(1,−1)
𝑏 − 𝑣(0,0)𝑎 ) ,

𝑚𝑏�̈�
(0,0)
𝑏 = 𝑘1(𝑣(0,0)𝑎 − 𝑣(0,0)𝑏 ) + 𝑘1(𝑣(1,0)𝑎 − 𝑣(0,0)𝑏 ) + 𝑘1(𝑣(0,1)𝑎 − 𝑣(0,0)𝑏 )

+ 𝑘2(𝑣(1,1)𝑎 − 𝑣(0,0)𝑏 ) + 𝑘2(𝑣(1,−1)𝑎 − 𝑣(0,0)𝑏 ) + 𝑘2(𝑣(−1,1)𝑎 − 𝑣(0,0)𝑏 ) .

(1)

Given the periodicity of the lattice, the harmonic displacement
𝑣(𝐫, 𝑡) = 𝑒−i𝜔𝑡𝑣(𝐫) is written as a Bloch solution [69] yielding the
spatially periodic relation

𝑣(𝐫 + 𝐑, 𝑡) = 𝑒i𝐤⋅𝐑𝑣(𝐫, 𝑡) , (2)
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Fig. 1. Discrete elastic lattice and associated dispersion diagrams. (a) Hexagonal lattice described by the lattice vectors
{

𝐚1 , 𝐚2
}

, with unit cells with indices (𝑛1 , 𝑛2) and pairs of
masses (𝑚𝑎 , 𝑚𝑏) connected to the nearest (third nearest) neighboring masses through springs of stiffness 𝑘1 (𝑘2) denoted by continuous black (dashed colored) lines. The light blue
parallelogram denotes the reference unit cell (0, 0). The reciprocal lattice (basis vectors

{

𝐛1 ,𝐛2
}

) and high-symmetry points (𝛤 , K, K′, M, M′) are also shown. (b) Hexagonal lattices
(top panels) and dispersion surfaces (middle and bottom panels) for 𝛥𝑘 = 0 (left panels) and 𝛥𝑘 ≫ 1 (right panels). The unit cells in each case are highlighted in light blue. The
lattice for the case 𝛥𝑘 ≫ 1 corresponds to 4 unconnected copies (represented by different colors) of the lattice for the 𝛥𝑘 = 0 case, with double spacing. One of these 4 lattice is
represented in continuous lines (purple) for the sake of clarity. (c) Dispersion curves for 𝛥𝑘 = 0, 𝛥𝑘 = 1∕2, and 𝛥𝑘 ≫ 1.
�̃�1(𝐤) =
[

1 −(1 + 𝑒−i𝐤⋅𝐚1 + 𝑒−i𝐤⋅𝐚2 )∕3
−(1 + 𝑒i𝐤⋅𝐚1 + 𝑒i𝐤⋅𝐚2 )∕3 1

]

,

�̃�2(𝐤) =
[

1 −(𝑒i𝐤⋅(−𝐚1−𝐚2) + 𝑒i𝐤⋅(−𝐚1+𝐚2) + 𝑒i𝐤⋅(𝐚1−𝐚2))∕3
−(𝑒i𝐤⋅(𝐚1+𝐚2) + 𝑒i𝐤⋅(𝐚1−𝐚2) + 𝑒i𝐤⋅(−𝐚1+𝐚2))∕3 1

]

,

𝐌 =
[

𝑚𝑎 0
0 𝑚𝑏

]

,

(5)

Box I.
where 𝐫 and 𝑡 represent the spatial and time coordinates, respectively,
𝜔 the circular frequency, 𝐤 the wave vector, and 𝐑 a spatial shift in the
form 𝐑 = 𝑛1𝐚1 + 𝑛2𝐚2. Thus, Eq. (2) can be rewritten as

𝑣(𝑛1 ,𝑛2) = 𝑒i𝐤⋅(𝑛1𝐚1)𝑒i𝐤⋅(𝑛2𝐚2)𝑣(0,0) , (3)

where 𝑣(𝑛1 ,𝑛2) = 𝑣(𝐫+𝐑, 𝑡) and 𝑣(0,0) = 𝑣(𝐫, 𝑡). This allows to directly rep-
resent the relation between the masses of the unit cell with coordinates
(𝑛1, 𝑛2) and the base unit cell (0, 0).

Combining Eqs. (1)–(3) leads to the eigenproblem

(3𝑘1�̃�1(𝐤) + 3𝑘2�̃�2(𝐤) − 𝜔2𝐌)𝐮 = 𝟎 , (4)

with matrices (Eq. (5)) in Box I
and 𝐮 =

{

𝑢𝑎, 𝑢𝑏
}𝑇 , where 𝑢𝑎 = 𝑣(0,0)𝑎 and 𝑢𝑏 = 𝑣(0,0)𝑏 have been used for

the sake of simplicity.
By imposing a perturbation 𝛥𝑚 on a reference mass 𝑚 such that

𝑚𝑎 = 𝑚(1 + 𝛥𝑚) and 𝑚𝑏 = 𝑚(1 − 𝛥𝑚), and denoting 𝑘2 = 𝑘1𝛥𝑘, Eq. (4) is
rewritten as
(

1
1 + 𝛥𝑘

�̃�1(𝐤) +
𝛥𝑘

1 + 𝛥𝑘
�̃�2(𝐤) −𝛺2�̃�

)

𝐮 = 𝟎 , (6)

where 𝛺 = 𝜔∕𝜔0, with 𝜔0 =
√

3(𝑘1 + 𝑘2)∕𝑚 being a dimensionless
frequency, and �̃� = diag(1 + 𝛥𝑚, 1 − 𝛥𝑚).

The dispersion relation 𝛺 = 𝛺(𝐤) can be calculated by setting the
determinant of the matrix in Eq. (6) to zero, obtaining the characteristic
3 
equation

𝛺4(1 − 𝛥2
𝑚) − 2𝛺2 + (1 − 𝜑(𝐤)) = 0 . (7)

Here 𝜑(𝐤) is expressed as

𝜑(𝐤) =
𝜑1(𝐤) + 𝜑12(𝐤)𝛥𝑘 + 𝜑2(𝐤)𝛥2

𝑘

(1 + 𝛥𝑘)2
, (8)

with

𝜑1(𝐤) = (3 + 𝑒i𝐤⋅𝐚1 + 𝑒−i𝐤⋅𝐚1 + 𝑒i𝐤⋅𝐚2 + 𝑒−i𝐤⋅𝐚2 + 𝑒i𝐤⋅(𝐚1−𝐚2) + 𝑒−i𝐤⋅(𝐚1−𝐚2))∕9 ,

𝜑2(𝐤) = (3 + 𝑒i2𝐤⋅𝐚1 + 𝑒−i2𝐤⋅𝐚1 + 𝑒i2𝐤⋅𝐚2 + 𝑒−i2𝐤⋅𝐚2 + 𝑒i2𝐤⋅(𝐚1−𝐚2)

+ 𝑒−i2𝐤⋅(𝐚1−𝐚2))∕9 ,
𝜑12(𝐤) = (2(𝑒i𝐤⋅𝐚1 + 𝑒−i𝐤⋅𝐚1 + 𝑒i𝐤⋅𝐚2 + 𝑒−i𝐤⋅𝐚2 + 𝑒i𝐤⋅(𝐚1−𝐚2) + 𝑒−i𝐤⋅(𝐚1−𝐚2))

+ 𝑒i𝐤⋅(𝐚1+𝐚2) + 𝑒−i𝐤⋅(𝐚1+𝐚2) + 𝑒i𝐤⋅(2𝐚1−𝐚2) + 𝑒−i𝐤⋅(2𝐚1−𝐚2)

+ 𝑒i𝐤⋅(−𝐚1+2𝐚2) + 𝑒−i𝐤⋅(−𝐚1+2𝐚2))∕9 .

(9)

We remark here that 𝜑1(𝐤) > 0 for 𝐤 ∈ R2, 𝜑2(𝐤) > 0 for 𝐤 ∈ R2,
and −2∕3 < 𝜑12(𝐤) < 2 for 𝐤 ∈ R2. Note that the expression for 𝜑(𝐤)
remains invariant under the transformation 𝐤 → 𝐑𝜋∕3𝐤, where 𝐑𝜃 is a
rotation matrix that rotates vectors by an angle 𝜃, i.e., when the wave
vector is rotated by 𝜋∕3 about the 𝛤 point. Hence the set of zeros of
𝜑(𝐤) has 6-fold rotation symmetry about the origin. In addition, 𝜑(𝐤)
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has 3-fold rotation symmetry about each K point (see Appendix A for
further details).

The solution of Eq. (7) yields a pair of dispersion surfaces 𝛺1,2(𝐤)
given by

𝛺2
1,2(𝐤) =

1
1 − 𝛥2

𝑚
±

√

√

√

√

𝜑(𝐤)
1 − 𝛥2

𝑚
+
(

𝛥𝑚

1 − 𝛥2
𝑚

)2
. (10)

For the particular case of a unit cell with equal masses (𝛥𝑚 = 0), it
reduces to

𝛺2
1,2(𝐤) = 1 ±

√

𝜑(𝐤) . (11)

The dispersion surfaces, thus, exhibit Dirac cones (i.e., 𝛺1(𝐤) =
2(𝐤)) at the solutions of 𝜑(𝐤) = 0. In the case of unit cells with

distinct masses (𝛥𝑚 ≠ 0), the degeneracy of frequencies at the Dirac
ones disappears and a band gap opens. The normalized frequency band
idth is given by

2 −𝛺1 =
1

√

1 − 𝛥𝑚
− 1

√

1 + 𝛥𝑚
. (12)

When only nearest neighboring masses are connected (𝛥𝑘 = 0) the
dispersion relation simplifies, since 𝜑(𝐤) = 𝜑1(𝐤), and the unit cell
reduces to the one shown in the top left panel of Fig. 1b. Rewriting
the wave vector as 𝐤 = 𝜅1𝐛1 + 𝜅2𝐛2, with 𝐛1 =

{

2𝜋∕𝑎, −2𝜋∕𝑎
√

3
}𝑇

and

2 =
{

0, 4𝜋∕𝑎
√

3
}𝑇

being the reciprocal lattice vectors [70], 𝜑1 can be
xpressed as

1(𝜅1, 𝜅2) = (3+𝑒i𝜅12𝜋+𝑒−i𝜅12𝜋+𝑒i𝜅22𝜋+𝑒−i𝜅22𝜋+𝑒i(𝜅1−𝜅2)2𝜋+𝑒−i(𝜅1−𝜅2)2𝜋 )∕9 .

(13)

q. (13) presents solutions 𝜑1(𝜅1, 𝜅2) = 0 for the {𝜅1, 𝜅2} pairs {±2∕3,
1∕3}, {±1∕3, ±2∕3}, {±1∕3, ∓1∕3}, corresponding to the K and K′

oints of the first Brillouin zone [71]. The dispersion surfaces nucle-
ting the six Dirac cones (𝛺 = 1, contour plot going to white) are
isplayed in the middle and lower left panels of Fig. 1b.

When the connections of third nearest neighboring masses are pre-
ominant (𝛥𝑘 ≫ 1), the characteristic equation is also simplified,

since 𝜑(𝐤) ≈ 𝜑2(𝐤). The dispersion surfaces are similar to those of the
revious case (when 𝛥𝑘 = 0) but with a double lattice length (2𝑎),
ince 𝜑2(𝐤) = 𝜑1(2𝐤). This condition results in a lattice equivalent to 4
nconnected copies of the 𝛥𝑘 = 0 lattice, as represented in the top right
anel of Fig. 1b, where the unconnected hexagons are represented by
ifferent dashed colored lines. The local linear energy dispersion at the
icinity of the K-points are equivalent to the previous case (𝛥𝑘 = 0), as
epresented by the middle and lower right panels of Fig. 1b.

The case 0 < 𝛥𝑘 < 1 represents the possibility of tuning the
ispersion surfaces using the stiffness ratio of springs connecting the
earest and third nearest neighboring masses. The dispersion curves
long the M-𝛤 -K-M path of the first Brillouin zone are illustrated in
ig. 1c for the cases 𝛥𝑘 = 0, 𝛥𝑘 = 1, and 𝛥𝑘 = 1∕2 (see Appendix B for
urther details on the choice of these values).

. Trajectories of Dirac cones and topological invariants

The high symmetry points K and K′ host Dirac cones for the hexag-
nal lattice for all values of 𝛥𝑘 ≥ 0 (see Fig. 1b). The loci of the
irac cones for different values of the stiffness ratio 𝛥𝑘 are given by

he solutions of 𝜑(𝐤) = 0 (see Eq. (11)). A direct substitution shows
hat 𝜑(𝐤) = 0 for all values of 𝛥𝑘 ≥ 0 at the K point of coordinates
4𝜋∕3𝑎, 0), as indicated by the vertical blue line in Fig. 2a, reporting
he trajectories of Dirac cones in the (𝜅𝑥, 𝛥𝑘) plane at 𝜅𝑦 = 0. The

location of this cone does not vary as a function of 𝛥𝑘. For 𝛥𝑘 = 1∕3,
an additional Dirac cone, reported in red and denoted as (i), arises
at the high symmetry M point of coordinates (𝜋∕𝑎,−𝜋∕𝑎

√

3). Further
increasing 𝛥 , this cone moves to K when 𝛥 = 1∕2, and then towards
𝑘 𝑘

4 
K∕2 when 𝛥𝑘 > 1∕2, as shown by the portion of the curve denoted as
(i′).

The number of additional Dirac cones formed, and their respective
trajectories as a function of 𝛥𝑘, is numerically derived by solving the
equation 𝜑(𝐤) = 0 for each 𝛥𝑘 in a region of ( 2𝜋3𝑎 × 2𝜋

𝑎
√

3
) size around the

point in the first Brillouin zone (see Fig. 2b). From this analysis it
merges that for 𝛥𝑘 = 1∕3, three additional Dirac cones (red curves),
he evolution of which is denoted as (i)-(i′), (ii)-(ii′), and (iii)-(iii′),
rise at the high symmetry M points. As 𝛥𝑘 increases further, the Dirac
ones move along the M–K path and intersect at the K point when
𝑘 = 1∕2, resulting in a four-fold degeneracy. For larger values of
𝑘, these newer Dirac cones move towards the wave vector at K/2
2𝜋∕3𝑎, 0), as described by the trajectories (i′), (ii′), and (iii′). It is

worth mentioning here that the K∕2 point corresponds to the K point in
the reciprocal lattice of a larger hexagonal lattice with twice the unit
cell length (see the right panel of Fig. 1b). This can be explained by
recalling that 𝜑(𝐤) → 𝜑2(𝐤) as 𝛥𝑘 ≫ 1 and 𝜑2 is similar to 𝜑1, with
the lattice vectors doubled. Thus, in the limit 𝛥𝑘 ≫ 1, the reciprocal
lattice vectors and dispersion surface is a smaller copy, by a factor 2,
of the 𝛥𝑘 = 0 case. The reciprocal lattice symmetries about the 𝛤 and
K points allow to determine Dirac points in the entire reciprocal space
(Fig. 2c). The curves indicating Dirac cone locations are depicted using
two colors (blue and red) corresponding to their opposite Berry phase
(see Fig. 2d). An analogous behavior, but with opposite Berry phase, is
observed in the K′ points.

In a topological insulator, a non-zero Berry curvature [72–74]
around a gap is an indicative of the topological protection of the gap.
In this case, the associated topological invariant is the valley Chern
number [75], obtained by integrating the Berry curvature in the area
surrounding one of the nodal degeneracies observed for 𝛥𝑚 = 0.

Recalling the eigenproblem given by Eq. (6), i.e.,
( 1
1+𝛥𝑘

�̃�1(𝐤) +
𝛥𝑘

1+𝛥𝑘
�̃�2(𝐤) −𝛺2�̃�

)

𝐮 = 𝟎, the corresponding eigenvalues 𝛺2 and eigen-
ectors 𝐮 are computed for each wave vector 𝐤, i.e., 𝛺2 = 𝛺2(𝐤) and
= 𝐮(𝐤). The corresponding Berry flux, which approximates the Berry

urvature, can then be determined in a discrete 𝐤-space computing the
uantity [28]

(𝐤) = Im
(

ln
(

⟨𝐮(𝐤1)|𝐮(𝐤2)⟩⟨𝐮(𝐤2)|𝐮(𝐤3)⟩⟨𝐮(𝐤3)|𝐮(𝐤4)⟩⟨𝐮(𝐤4)|𝐮(𝐤1)⟩
⟨𝐮(𝐤1)|𝐮(𝐤1)⟩⟨𝐮(𝐤2)|𝐮(𝐤2)⟩⟨𝐮(𝐤3)|𝐮(𝐤3)⟩⟨𝐮(𝐤4)|𝐮(𝐤4)⟩

))

,

(14)

here ⟨𝐮(𝐤)|𝐮(𝐤′)⟩ = 𝐮(𝐤)𝐻 �̃� 𝐮(𝐤′), (⋅)𝐻 denotes a conjugate trans-
ose vector, and the wave vectors 𝐤1, 𝐤2, 𝐤3, and 𝐤4 are defined

as 𝐤1 =
{

𝜅𝑥 − 𝑑𝜅𝑥, 𝜅𝑦 − 𝑑𝜅𝑦
}𝑇 , 𝐤2 =

{

𝜅𝑥 + 𝑑𝜅𝑥, 𝜅𝑦 − 𝑑𝜅𝑦
}𝑇 , 𝐤3 =

𝜅𝑥 + 𝑑𝜅𝑥, 𝜅𝑦 + 𝑑𝜅𝑦
}𝑇 , and 𝐤4 =

{

𝜅𝑥 − 𝑑𝜅𝑥, 𝜅𝑦 + 𝑑𝜅𝑦
}𝑇 , where 𝑑𝜅𝑥×𝑑𝜅𝑦

orresponds to a small patch in the 𝐤-space centered at (𝜅𝑥, 𝜅𝑦). The
omputed Berry flux values are shown in Fig. 2d for selected values
f 𝛥𝑘, namely 0, 1∕3, 1∕2, 1, and ≫ 1 (see Supplementary Movie 1 for

the maps of 𝐵(𝐤) at intermediate values of 𝛥𝑘). Analogous results are
obtained using the Berry curvature formulation presented in [76] and
given in Appendix C.

When only nearest neighbor connections are present (𝛥𝑘 = 0) Berry
flux values of −𝜋 (+𝜋) at the K (K′) points are found. As the value of
𝛥𝑘 increases between 0 and 1∕2, regions of opposed phase +𝜋 (−𝜋)
are formed between the K (K′) and M points (midpoint between K
and K′ points, illustrated by 𝛥𝑘 = 1∕3). Once 𝛥𝑘 reaches the value of
1∕2, both K and K′ points present a zero value of Berry flux, with a
surrounding region presenting values of +𝜋 (−𝜋). For increasing values
of 𝛥𝑘 > 1∕2, the peaks of +𝜋 (−𝜋) values are dislocated to the center
of each Brillouin zone, stabilizing in the form of a reciprocal lattice
with a double lattice length (2𝑎), corresponding to the only non-nearest
neighboring connections case (𝛥𝑘 ≫ 1).

Thus, the red and blue curves in Fig. 2a–c indicate Dirac cones
where the lower dispersion surface has, respectively, positive and

negative Berry flux values in their vicinity. As previously mentioned,
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Fig. 2. Loci of the Dirac cones and Berry flux in reciprocal space. (a-c) Location of Dirac cones and their evolution for increasing values of the stiffness ratio 𝛥𝑘: (a) representation
in the (𝜅𝑥 , 𝛥𝑘) plane at 𝜅𝑦 = 0, (b) close-up view around the K point for 𝜅𝑥 ∈ [ 2𝜋

3𝑎
, 6𝜋
3𝑎
] and 𝜅𝑦 ∈ [− 𝜋

𝑎
√

3
, 𝜋
𝑎
√

3
], and (c) Dirac cones in the entire reciprocal space. (d) Berry flux 𝐵(𝐤)

computed for increasing values of 𝛥𝑘.
Dirac cones at K and K′ points have opposite Berry flux values. In
addition, the two Dirac cones originating at the M point at 𝛥𝑘 = 1∕3
have opposite signs of Berry flux. The Dirac cones that intersect at each
K point all have the same phase, which is opposite to the one at the K′

point. Finally, an inversion in the sign of the Berry flux is obtained
exactly at 𝛥𝑘 = 1∕2 in the vicinity of the K (positive) and K′ (negative)
points.

The valley Chern number is computed by integrating the Berry flux
over the K and K′ points as

𝐶𝜈 =
1
2𝜋

∑

𝜅𝑥

∑

𝜅𝑦

𝐵(𝐤) . (15)

The computation of 𝐶𝜈 using the results presented in Fig. 2d yields
the values −1∕2 and +1∕2, respectively, for the K and K′ points when
𝛥𝑘 ≠ 1∕2. When 𝛥𝑘 < 1∕3, the Berry curvature is zero everywhere
except around the K and K′. In this range of 𝛥𝑘, a valley Chern number
of ±1∕2 indicates the presence of a localized mode at an interface
between two lattices that are inverted copies of each other [45]. When
𝛥𝑘 > 1∕3, the Berry curvature is non-zero at other points in the
reciprocal lattice, revealing that it does not suffice to examine only
the high symmetry K and K′ points. A special case arises at 𝛥𝑘 = 1∕2,
when the Dirac cones merge and the Berry flux is concentrated around
these high symmetry points. At this 𝛥𝑘, the valley Chern numbers
are +1 and −1 for the K and K′ points, respectively. These values
indicate the existence of two localized modes at an interface, similar
to that observed in [77] due to the higher valley Chern number. In the
next section, we demonstrate how these modes hybridize at the high
symmetry point to give rise to bound modes at an interface.

4. Interface modes in a finite strip

In the previous section, we have seen that the connection of non-
neighboring masses has allowed for the nucleation and merging of
additional Dirac cones at the high symmetry points K (K′). An in-
crease in the number of Dirac cones leads to a corresponding increase
in the number of topological edge modes, as recently shown in a
one-dimensional mass–spring chain where non-adjacent masses were
connected through additional springs [64]. Here, we examine a one-
dimensional periodic finite strip obtained by arranging the investigated
hexagonal lattice into regions with opposing mass variations. The
5 
interface created between such regions allows the leverage of edge
modes.

To this purpose, a lattice with an infinite number of unit cells in
the 𝐚1-direction and a finite number of unit cells in the 𝐚2-direction,
containing an interface between (i) a top region with unit cells with
𝛥𝑚,𝑡 (recalling that 𝛥𝑚 is the variation between the two masses of a
unit cell) and (ii) a bottom region with unit cells with 𝛥𝑚,𝑏 = −𝛥𝑚,𝑡 is
considered. This configuration is presented in Fig. 3a, where the masses
are labeled as 1, 2,… , 2𝑛𝑝, for 𝑛𝑝 pairs of masses in the strip unit cell
(dashed parallelogram) and the interface indicated using a red dashed
line. The dispersion relations for different values of 𝛥𝑘 in this strip
are computed by imposing periodicity condition on its left and right
boundaries (the derivation is presented in Appendix D).

Fig. 3b (top left panel) shows the dispersion diagram for the case
of only nearest neighboring masses connected (i.e., 𝛥𝑘 = 0). The curves
are reported for 𝑛𝑝 = 20 and 𝛥𝑚 = 1∕5. Similar results are obtained
when different values of 𝑛𝑝 and 𝛥𝑚 are considered (see Supplementary
Movie 3). The dispersion curves shown in black indicate bulk (globally
spanning) modes, whereas the two branches enveloping the ensemble
of curves located between 1 < 𝛺 <

√

2 (highlighted in green and red)
are localized at the interface. The wave modes corresponding to these
branches are shown in the bottom left panel of Fig. 3b (green and red
stars, respectively), reported at 𝜅𝑥 = 0. Note that these modes present,
respectively, even and odd symmetries with respect to the interface (red
dashed line). These symmetries are lost with respect to the interface
at the high symmetry point X (𝜅𝑥 = 𝜋∕𝑎) because subsequent pairs
of masses are fully decoupled (top right panel of Fig. 3b). Due to the
full decoupling of adjacent pairs of masses, both even (green) and odd
(red) branches converge to the same propagating frequency, whose
associated wave modes represent an ideal condition of localization
of displacements, as represented by the wave modes shown under
the yellow circle symbol (bottom right panel of Fig. 3b). We remark,
however, that these correspond to bound modes in the continuum
(i.e., frequencies within the range of the bulk bands) and cannot be
excited in an isolated manner due to the frequency coincidence with
the bulk modes.

The symmetry conditions for the decoupling of adjacent pairs of
masses in the finite strip has been reported in literature (see Fig. 21b
in [31]) and it can be explained as follows (refer to Appendix D for the
full derivation). Imposing the condition of Bloch periodicity and noting
that the displacements are exactly out-of-phase in adjacent unit cells at
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Fig. 3. Dispersion diagrams and localized modes in a finite strip. (a) Lattice with periodicity in the 𝐚1-direction and a finite length in the 𝐚2-direction, presenting an interface
between the top (𝛥𝑚,𝑡, in orange) and bottom (𝛥𝑚,𝑏 = −𝛥𝑚,𝑡, in purple) regions. (b) Dispersion curves for 𝛥𝑚 = 1∕5, 𝛥𝑘 = 0, with branches having even (green) and odd (red)
symmetries enveloping the bulk bands, whose wave modes are shown at 𝜅𝑥 = 0 (green and red starts, respectively). These modes converge to a set of bound modes in the continuum,
showing the localized motion of pairs of masses (yellow circle) due to decoupled consecutive unit cells (top right panel). (c) Decoupled pairs of dimer chains at 𝜅𝑥 = 𝜋∕𝑎 with
symmetry at the point P (P′) for the chain marked with continuous (dashed) lines. (d) Dispersion curves computed for 𝛥𝑚 = 1∕5, 𝛥𝑘 = 2∕5. The even (odd) modes indicated as
E1/E2 (O1/O2) and highlighted in green (red) merge into bound modes marked by the green square (red diamond) at 𝜅𝑥 = 𝜋∕𝑎, who display even (odd) symmetry about the P
(P′) point, relative to masses 𝑛𝑝 − 2/𝑛𝑝 + 1 (𝑛𝑝/𝑛𝑝 + 3).
𝜅𝑥 = 𝜋∕𝑎, the strip unit cell decouples into two dimer chains related to
the indices {1, 2, 5, 6,… , 𝑛𝑝+1, 𝑛𝑝+2,… , 2𝑛𝑝−3, 2𝑛𝑝−2} and {2𝑛𝑝, 2𝑛𝑝−
1,… , 𝑛𝑝, 𝑛𝑝 − 1,… , 8, 7, 4, 3}. Fig. 3c reports a schematic representation
of these unit cells with the resulting dimer chain connections indicated
in continuous and dashed black lines, respectively. Since the two chains
are identical, a two-fold degeneracy in the set of frequencies at 𝜅𝑥 = 𝜋∕𝑎
is implied, and their mode shapes (𝐮, 𝐯) to be related as 𝑢𝑚 = 𝑣2𝑛𝑝+1−𝑚
(𝑚 takes values in the first set above). The effective stiffness of springs
in the dimer chains, 𝑘1𝛥𝑘 and 𝑘1(2𝛥𝑘 − 1), yield zero-valued stiffness
connections for the values of 𝛥𝑘 = 0 (as previously demonstrated in
Fig. 3b) and 𝛥𝑘 = 1∕2, respectively.

Having shown that the strip unit cell decouples into two chains at
𝜅𝑥 = 𝜋∕𝑎, we now analyze the topological properties of the chains
on either side of the interface. The topological properties leading to
the presence of localized and bound modes at the interface of these
decoupled dimer chains are analyzed by initially considering the dis-
persion behavior of a unit cell belonging to the bottom domain (dashed
parallelogram) in Fig. 3c. Using Bloch–Floquet periodicity conditions,
its governing equations at the normalized wavenumber 𝜇 reduce to the
form �̃� 𝐮 = 𝛺2�̃� 𝐮 with the dimensionless stiffness �̃� and mass �̃�
X X X X

6 
matrices given by

�̃�X = 𝐈2 −
2𝛥𝑘 − 1 + 𝛥𝑘 cos𝜇

3(1 + 𝛥𝑘)
𝜎𝑥 −

𝛥𝑘 sin𝜇
3(1 + 𝛥𝑘)

𝜎𝑦 ,

�̃�X = 𝐈2 + 𝛥𝑚𝜎𝑧 ,
(16)

where 𝐮 represents the displacements in a unit cell formed by following
masses of index 2𝑛 and 2𝑛 + 1 of the dimer chain, 𝐈2 is an order-2
identity matrix, and 𝜎𝑖 are the set of Pauli matrices. The normalized
wavenumber 𝜇 measures the periodicity of waves along 𝑎2 on the
bottom half of the strip unit cell at 𝜅𝑥 = 𝜋∕𝑎. An analogous dispersion
relation can be obtained for the upper side of the interface by consid-
ering �̃�X = 𝐈2 − 𝛥𝑚𝜎𝑧. Note that this dimer chain becomes identical to
the well investigated Su–Schrieffer–Heeger (SSH) chain when 𝛥𝑚 = 0.
However, the results of SSH chain are not applicable here since we do
not have an interface in the strip when 𝛥𝑚 = 0. Similar dimer chains,
where both the adjacent masses and adjacent springs are distinct, were
considered recently by Liu and Semperlotti [78]. In this work, the
authors identified nontrivial topological behavior associated with 𝛥𝑚 <
0 when all springs are identical and showed the existence of localized
modes at the ends of the chain. In contrast, here we have an interface
between two lattices, along with both the adjacent spring stiffness and
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mass values are different. To investigate its behavior, we observe that
the dimer chain obtained for 𝜅𝑥 = 𝜋∕𝑎 (Fig. 3c) has inversion symmetry
about the point P (P′). This point corresponds to the interface between
masses 𝑛𝑝 −2 and 𝑛𝑝 +1 (𝑛𝑝 and 𝑛𝑝 +3) for the dimer chain represented
using continuous (dashed) lines.

Let us now proceed to investigate the dispersion diagram of the strip
for 𝛥𝑘 ≠ 0. We compute the dispersion relations adopting 𝑛𝑝 = 20, 𝛥𝑚 =
1∕5, and 𝛥𝑘 = 2∕5 and report the corresponding dispersion diagram in
the top panel of Fig. 3d. Similarly to the case of 𝛥𝑘 = 0, the diagram
exhibits bulk modes (black lines) and interface modes characterized by
even and odd symmetries with respect to the interface, indicated as
the green and red lines, respectively. In this case, however, for each
symmetry (even or odd) a pair of branches is present, denoted as E1,
E2 and O1, O2, respectively. Approaching 𝜅𝑥 = 𝜋∕𝑎, the two branches
E1 and E2 of even mode shapes both move inside the band gap and
degenerate at 𝜅𝑥 = 𝜋∕𝑎 (green square in top panel of Fig. 3d) with a
mode shape that is even about P/P′ (green square in bottom panel of
Fig. 3d). On the contrary, the two branches O1 and O2 of odd mode
shapes about P/P′ merge into a degeneracy point above the upper bulk
bands at 𝜅𝑥 = 𝜋∕𝑎 (red diamond in top and bottom panels of Fig. 3d).
Note that the frequency shift displayed by these modes at 𝜅𝑥 = 𝜋∕𝑎 is
controlled by the variation of the relative stiffness (𝛥𝑘) between first
and third nearest neighboring springs. The merging of these pairs of
branches happens for all 𝛥𝑘 > 0 when 𝛥𝑚 > 0 and 𝛥𝑘 < 1∕2, while, for
𝛥𝑚 < 0, the even interface branches lie below the lower bulk band at
the edge of the Brillouin zone, while the odd interface branches lie in
the band gap.

The inversion symmetry is recognizable from the shown wave
modes (bottom panel of Fig. 3d) which indicates the symmetries
between the pairs of masses 𝑛𝑝 − 2/𝑛𝑝 + 1 and 𝑛𝑝/𝑛𝑝 + 3. These features
arise from the symmetry properties of the interface. The two modes
undergo braiding and thus interchange at 𝜅𝑥 = 2𝜋∕𝑎. The reason for
the two-fold degeneracy at 𝜅𝑥 = 𝜋∕𝑎 in the dispersion of the strip unit
cell derives from the adjacent unit cells moving exactly out-of-phase,
which results in a net cancellation of forces between a set of masses.
These cancellations effectively decouple the interface unit cell into two
chains. Detailed derivations are presented in Appendix D. The strip
unit cell has inversion symmetry about a point at its center, i.e., the
lattice remains unchanged under the transformation 𝐫 → −𝐫 for the
nodal position vector 𝐫. This symmetry holds for all wavenumbers 𝜅𝑥.
In addition, at 𝜅𝑥 = 𝜋∕𝑎, each of the decoupled chains has an additional
inversion symmetry. The continuous and dashed chains are symmetric
about the points P and P′, respectively.

Explicit expressions for the frequencies and mode shapes of the
localized modes in the decoupled chain at 𝜅𝑥 = 𝜋∕𝑎 are derived to
illustrate the topological nature of the transition that results in bound
modes. A transfer matrix approach similar to that presented in [79]
is used. A harmonic solution of the form 𝑒−i𝜔𝑡𝐮 is assumed for the
decoupled chain with continuous lines. In these expressions, masses are
re-labeled starting from the interface using positive integers (𝑛 > 0)
starting from 1 (mass closest to the interface). The governing equations
for masses 2𝑛 and 2𝑛 + 1 (masses more distant from the interface) may
then be written (see Appendix D) as
{

𝑢2𝑛+1
𝑢2𝑛+2

}

=
[

(1 − 2𝛥𝑘)∕𝛥𝑘 𝛾+
−𝛾− (1 − 𝛾+𝛾−)𝛥𝑘∕(1 − 2𝛥𝑘)

]{

𝑢2𝑛−1
𝑢2𝑛

}

,

(17)

where 𝛾± = (3(1+𝛥𝑘)−𝜔2(1±𝛥𝑚)𝑚∕𝑘1)∕𝛥𝑘. The 2 × 2 transfer matrix in
the above equation, indicated hereafter by 𝐓, is symplectic satisfying
the identity 𝐓𝑇𝐖𝐓 = 𝐖 with 𝐖 = i𝜎𝑦 and det(𝐓) = 1. The two
eigenvalues 𝜆 of matrix 𝐓, obtained from the relation 𝐓

{

𝑢2𝑛−1, 𝑢2𝑛
}𝑇 =

𝜆
{

𝑢2𝑛−1, 𝑢2𝑛
}𝑇 , 𝑛 > 0, are the inverse of each other. Also, applying the

above equation successively yields
{ }𝑇 𝑛 { }𝑇
𝑢2𝑛+1, 𝑢2𝑛+2 = 𝐓 𝑢1, 𝑢2 , (18)

7 
for displacements
{

𝑢1, 𝑢2
}𝑇 of the unit cell located at the interface. For

a mode to be localized at the interface, its displacement must decay to
zero as 𝑛 → ∞. The objective now is to obtain modes where

{

𝑢1, 𝑢2
}𝑇

is an eigenvector of 𝐓 with an eigenvalue |𝜆| < 1, a condition which
fulfills the requirement of displacements decaying to zero [80].

The possible choices for displacements
{

𝑢1, 𝑢2
}𝑇 cannot be arbitrary

and needs to satisfy the governing equation of the interface mass. Since
the chain has reflection symmetry about the interface, its mode shapes
are thus eigenvectors of the reflection operator [81]. The eigenvalues
of this operator are ±1, which correspond to even and odd modes
about the interface. Eliminating the displacement of the mass across the
interface by imposing each of these symmetry conditions, the governing
equation for the interface mass becomes
(

2𝛥𝑘 − 1
)

𝑢2 =
(

3 + 2𝛥𝑘 − 𝜔2(1 − 𝛥𝑚)𝑚∕𝑘1
)

𝑢1, for the even mode,
(19a)

(

2𝛥𝑘 − 1
)

𝑢2 =
(

3 + 4𝛥𝑘 − 𝜔2(1 − 𝛥𝑚)𝑚∕𝑘1
)

𝑢1, for the odd mode.
(19b)

From numerical simulations, we observe the relations 𝑢2 = 𝑢3 and
𝑢2 = −𝑢3 for the even and odd modes, respectively (see mode shapes in
Fig. 4a). Using these relations in Eq. (17) gives the condition

𝑇11𝑢1 + 𝑇12𝑢2 = ±𝑢2 (20)

where 𝑇𝑖𝑗 are the components of 𝐓, for the even (+) and odd (−)
modes, respectively. Substituting Eq. (19) into this condition results in
quadratic equations for 𝜔2 in each case (even, odd). An alternate ap-
proach to determine 𝜔 is using the eigenvector condition, i.e., {𝑢1, 𝑢2}𝑇
is an eigenvector of 𝐓 along with Eq. (19) [79].

The solution of the quadratic equation yields two frequencies in
each case, even and odd. To determine if these are valid solutions, we
verify that the corresponding eigenvalue of 𝐓 satisfies |𝜆| < 1. From
Eq. (20), we infer that 𝜆𝑢1 = ±𝑢2 for the even (+) and odd (−) modes,
respectively. Substituting this into Eq. (19) gives explicit expressions
for 𝜆. Numerical computations showed that |𝜆| < 1 for one solution in
each of the odd and even cases, i.e., we have two valid solutions for
modes localized at the interface. In particular, when 𝛥𝑚 < 0 (𝛥𝑚 > 0),
the odd (even) mode lies in the band gap, while the even (odd) mode
is outside the lower (upper) bulk band.

The natural frequency 𝛺𝑒 of the even localized mode, obtained with
the above procedure, is given by

𝛺2
𝑒 =

3 + 2𝛥𝑘 + sign(𝛥𝑚)
√

(2𝛥𝑘 − 1)2 + 8(1 + 2𝛥𝑘)𝛥2
𝑚

3(1 + 𝛥𝑘)(1 − 𝛥2
𝑚)

. (21)

The corresponding localized mode shape can be expressed in terms of
the number 𝑛 of masses away from the interface in the considered chain
using Eq. (18). It is given by

{

𝑢±2𝑛
𝑢±(2𝑛+1)

}

=

[

3 + 2𝛥𝑘 − 3𝛺2
𝑒 (1 + 𝛥𝑘)(1 − 𝛥𝑚)

2𝛥𝑘 − 1

]

|𝑛|
{

1
1

}

, 𝑛 ∈ N .

(22)

Similarly, the natural frequency 𝛺𝑜 of the odd localized mode is
given by

𝛺2
𝑜 =

3 + 4𝛥𝑘 + sign(𝛥𝑚)
√

(2𝛥𝑘 − 1)2 + 4(2 + 𝛥𝑘)(1 + 3𝛥𝑘)𝛥2
𝑚

3(1 + 𝛥𝑘)(1 − 𝛥2
𝑚)

, (23)

with the corresponding localized mode shape

{

𝑢±2𝑛
𝑢±(2𝑛+1)

}

= ±

[

3 + 4𝛥𝑘 − 3𝛺2
𝑜 (1 + 𝛥𝑘)(1 − 𝛥𝑚)

1 − 2𝛥𝑘

]

|𝑛|
{

−1
1

}

, 𝑛 ∈ N ,

(24)

where 𝑢+𝑞 (𝑢−𝑞) indicates the displacement of the 𝑞th mass on the
left (right) side of the interface in Fig. 3c. In this mode shape, the
displacement of masses at the interface are set to 𝑢 = −𝑢 = 1.
1 −1
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Fig. 4. Localized mode shapes and dimer chain for 𝛥𝑘 = 1∕2. (a) Mode shapes in a decoupled at 𝜅𝑥 = 𝑝𝑖∕𝑎 for obtained for 𝛥𝑚 = +1∕5 > 0 (left column), 𝛥𝑚 = −1∕5 < 0 (right
column), 𝛥𝑘 = 1∕5 < 1∕2 (upper row), and 𝛥𝑘 = 4∕5 > 1∕2 (lower row), decay of modes from the interface. (b) Ratio of 𝑢𝑛𝑝−1∕𝑢𝑛𝑝 𝛥𝑘 transverses the value 1∕2 has a transition
through zero. (c) Decoupling of masses for 𝛥𝑘 = 1∕2 at the wavenumber 𝜅𝑥 = 𝜋∕𝑎 showing perfectly isolated bound modes (marked under the green square and red diamond) in
the band gap.
Fig. 4a displays the interface localized mode shapes for two values
of mass difference, 𝛥𝑚 = ±1∕5. For the case 𝛥𝑚 > 0, the localized
modes (𝛥𝑚 > 0, 𝛥𝑘 < 1∕2 and 𝛥𝑚 > 0, 𝛥𝑘 > 1∕2) are even about P. It
is interesting to note that the sign of the displacement of the blue mass
adjacent to the interface changes as 𝛥𝑘 varies about 1∕2, shown here for
𝛥𝑘 = 1∕5 and 4∕5. Since the mode shapes change continuously as 𝛥𝑘 is
varied between these values, it indicates that the blue mass has zero
displacement for at least one value of 𝛥𝑘 in this interval. To investigate
this observation, the variation of the ratio of displacements of the blue
and the yellow masses (𝑢𝑛𝑝−1 and 𝑢𝑛𝑝 , respectively) considering the
wave mode in the band gap is shown in Fig. 4b for values of 𝛥𝑘 in
the vicinity of 1∕2. For both 𝛥𝑚 = +1∕5 > 0 and 𝛥𝑚 = −1∕5 < 0, we
have a zero ratio of displacements at 𝛥𝑘 = 1∕2.

It is interesting to recall that the case 𝛥𝑘 = 1∕2 implies a zero
stiffness for the internal connections of the dimer chain (see Fig. 3c),
resulting in the effective decoupling indicated in Fig. 3g (top panel).
In this case, each wave mode at the edge of the first Brillouin zone
is associated with specific pairs of masses. The resulting bound modes
corresponding to the even and odd mode shapes for this case are shown
in Fig. 4c (top and bottom rows of the right panel, respectively). At
this 𝛥𝑘 value, from the mode shape expression in Eq. (22), we notice
that the decay factor must go to zero to satisfy

{

𝑢1, 𝑢2
}𝑇 = {1, 0}𝑇 .

Thus, all other masses away from the interface will also have zero
displacement. A similar argument indicates the existence of a bound
mode in the 𝛥𝑚 < 0 case, shown by the odd mode shapes in Fig. 4a
(𝛥𝑚 < 0, 𝛥𝑘 < 1∕2 and 𝛥𝑚 < 0, 𝛥𝑘 > 1∕2). We mention here that
this decoupling is similar to the one obtained in the case of 𝛥𝑘 = 0.
However, when 𝛥𝑘 = 1∕2, the frequencies of the resulting pairs of
bound modes lie in the band gap, making it easier to excite and thus
exploit them in practical applications. This tunability of the frequencies
in which bound modes appear is enabled by the additional designing
degree of freedom added by the third nearest neighbor connections.

Furthermore, by varying the stiffness of the nonlocal springs in
the direction normal to the interface (vertical dashed lines), the odd
bound mode frequency can be shifted to an arbitrary value above a
threshold. Indeed, let 𝑘𝑣 be the stiffness of springs indicated by dashed
lines pointing in the (0, 1) direction in Fig. 1a. The decoupling of
masses illustrated in Fig. 4c is valid under this stiffness change, with
the connecting springs now having value 𝑘1𝛥𝑣. The odd bound mode
frequency 𝛺𝑜 then becomes

𝛺2
𝑜 =

4
(

2 + 𝛥𝑣
)

9
(

1 − sign(𝛥𝑚)𝛥𝑚
) . (25)

By varying 𝛥𝑣, the frequency 𝛺𝑜 can take an arbitrary value above a
minimum threshold value when 𝛥𝑣 = 0. This minimum value is equal
to the frequency 𝛺 of the even bound mode shape.
𝑒
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For the sake of completeness, the behavior of the strip is also
analyzed for 𝜅𝑥 = 0. In this case, the resulting strip unit cell becomes
a dimer chain with distinct adjacent masses and springs, along with
an interface having identical adjacent masses. In contrast to the case
𝜅𝑥 = 𝜋∕𝑎, the dimer chain here has non-neighboring connections and
three distinct spring stiffness values 2𝑘1, 𝑘1(1 + 2𝛥𝑘), and 𝑘1𝛥𝑘 (see
Appendix D). The analysis of the wave propagation along the strip
yields the normalized stiffness and mass matrices of a unit cell given
by

�̃�0 = 𝐈2 −
2 + (1 + 3𝛥𝑘) cos𝜇

3(1 + 𝛥𝑘)
𝜎𝑥 −

sin𝜇
3

𝜎𝑦 ,

�̃�0 = 𝐈2 ± 𝛥𝑚𝜎𝑧 ,
(26)

where the ± sign is for the mass matrix at the bottom and top regions.
The eigenproblem stated as �̃�0𝐮 = 𝛺2�̃�0𝐮 yields the dispersion

relation associated with the lower and upper bulk bands at 𝜅𝑥 = 0,
as shown in Fig. 3b. The band gap region at 𝜅𝑥 = 0 is thus delimited
by the frequencies obtained at 𝜇 = 𝜋 and given by

𝛺2
𝑏 = 1

1 − 𝛥2
𝑚

(

1 ±

√

1 − (1 − 𝛥2
𝑚)
(

1 −
(

3𝛥𝑘 − 1
3𝛥𝑘 + 3

)2)
)

, (27)

which represent the propagating frequencies at the superior edge of the
bulk band with lower frequencies (−) and inferior edge of the bulk band
with higher frequencies (+).

For the case 𝛥𝑚 > 0, we numerically observe (see Supplementary
Movie 2) that the band gap present among these bulk bands contains
one even wave mode localized at the interface, which is located close
to the superior edge of the lower bulk band, for 𝛥𝑘 = 0, and crosses the
band gap until the inferior edge of the upper bulk band, for 𝛥𝑘 ≫ 1.
When 𝛥𝑚 < 0, an odd mode appears within the band gap, crossing the
band gap from the upper to the lower bulk bands.

5. Numerical results

5.1. Numerical results on a finite lattice

Numerical examples considering a finite structure containing a ‘‘Z’’-
shaped interface are now presented to verify the exploitation of bound
modes in a waveguiding application. To this end, a finite structure com-
prised of 60 × 40 unit cells (see Fig. 5a) with third nearest neighboring
masses connected as the one reported in Fig. 1a is considered. The value
𝛥𝑚 = 1∕2 is selected, thus yielding even bound modes with a frequency
of 𝛺𝑒 = 4∕3 (see Eq. (21)).

An eigenmode analysis is initially performed for the cases 𝛥𝑘 = 0
and 𝛥 = 1∕2 to verify the existence of interface modes at resonant
𝑘
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Fig. 5. Waveguiding application for propagation along sharp corners. (a) Finite structure (60 × 40 unit cells) presenting a ‘‘Z’’ interface between distinct regions. The pair of nodes
shown in purple and pink (‘‘excitation’’) are excited, and the displacements of the masses labeled as O1 and O2 (before and after the corner, respectively) are used as outputs
for the FFT computation. (b) Example of vibration modes for 𝛥𝑚 = 1∕2 obtained at 𝛺𝑡 = 1 for 𝛥𝑘 = 0 (top left) and 𝛺𝑒 = 4∕3 for 𝛥𝑘 = 1∕2 (top right). The displacement profiles
along the highlighted 21 pairs of masses for each case (in red and green, respectively) are shown in the bottom panels. (c) Transient analysis results for 𝛥𝑘 = 1∕2 at the time
instants 𝜏 = 50.1, 100.1, and 150.1. (d) FFT applied to the transient response considering the displacements of the masses labeled as O1 and O2 (before and after the sharp corner,
respectively).
frequencies of interest. Free boundary conditions are considered at
all edges of the finite structure. Our numerical results indicate the
existence of 7 vibration modes in the frequency range 𝛺𝑡 ±0.01, 𝛺𝑡 = 1
(center of the band gap), for the case 𝛥𝑘 = 0, whereas 10 vibration
modes are obtained for the case 𝛥𝑘 = 1∕2 in the frequency range
𝛺𝑒 ± 0.01. The vibration modes with the values closest to 𝛺𝑡 and 𝛺𝑒,
for 𝛥𝑘 = 0 and 𝛥𝑘 = 1∕2, are shown in the top left and right panels of
Fig. 5b, respectively. We notice (i) a phase inversion of subsequent unit
cells and (ii) a better localization of displacements of masses adjacent
to the interface for 𝛥𝑘 = 1∕2 when compared to 𝛥𝑘 = 0. To verify these
observations, we also plot the displacements of the 21 pairs of masses
highlighted in red (𝛥𝑘 = 0) and green (𝛥𝑘 = 1∕2). Both displacement
profiles are shown in the bottom panel of Fig. 5b, indicating an ideal
localization of two pairs of masses for the case 𝛥𝑘 = 1∕2.

Next, a transient analysis in the time domain is performed to verify
the propagation of elastic waves along the interface for the case 𝛥𝑘 =
1∕2. The transient analysis is performed considering a total of 𝜏 =
200 fundamental periods (2𝜋∕𝛺𝑒). A sinusoidal signal with the central
frequency 𝛺𝑒 is applied for 𝜏 ∈ [0, 100] modulated by a Hanning
window to achieve a narrowband excitation. This signal is applied
in the form of forces with alternating signs for subsequent pairs of
masses (purple and pink circles, marked as ‘‘excitation’’ in Fig. 5a). The
Newmark method is employed with 211 time steps [82].

The displacement fields obtained in the transient analysis are rep-
resented in Fig. 5c, with increasing values of time instants from top to
bottom (𝜏 = 50.1, 100.1, and 150.1). The displacement values for the
three distinct time instants are normalized for a better visualization.

It is interesting to notice that the excitation of bound modes can
easily be observed, staying mostly confined to the pair of masses
9 
that were excited. Some residual excitation of masses other than the
selected two pairs can also be noticed due to the existence of frequency
components slightly different from 𝛺𝑒 in the time signal. Furthermore,
it is also important to notice that due to the topological nature of
the excited modes, the energy is able to propagate along the sharp
corners (see 𝜏 = 150.1) with negligible backscattering, thus indicating
the localized waveguiding capabilities achieved for the configuration
𝛥𝑘 = 1∕2.

This observation is further verified by performing a fast Fourier
transform (FFT) on the displacements of selected masses with locations
before and after the sharp corner (masses labeled as O1 and O2, marked
in green and red, respectively, in Fig. 5a). The resulting FFT, shown
in Fig. 5d, demonstrates a clear concentration of energy around 𝛺𝑒 =
4∕3 for both cases, with a comparable level of frequency components
between both cases, thus indicating the efficiency of this structure for
waveguiding applications.

5.2. Elastic unit cell with third nearest neighbor couplings

Envisaging the experimental validation of the concepts arising from
nonlocal interactions presented in this work, we also propose here a
possible realization of a hexagonal unit cell with third nearest neigh-
bor connections. A schematic representing the corresponding lattice is
presented in Fig. 6a, where a parallelogram denoting a unit cell with
lattice constant 𝑎 is highlighted by the dashed lines, and the mass
elements are represented in blue and light yellow. Elements performing
nearest neighbor connections, with length 𝑙1 = 𝑎

√

3∕3, are represented
in gray, and elements connecting third nearest neighbors, with length
𝑙 = 2𝑎

√

3∕3, are represented in purple, green, and orange, respectively.
2
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Fig. 6. Unit cell design for a potential experimental realization. (a) Proposed lattice with unit cell of length 𝑎 (parallelogram with dashed lines) containing nearest (in gray, length
𝑙1) and third nearest neighbor connection elements (in purple, green, and orange, length 𝑙2) having a width 𝑏. (b) Portion of the unit cell where the ideal mass is implemented as
a cylinder of diameter 𝑑𝑚 and height ℎ𝑚; nearest (third nearest) neighbor connection elements have a thickness ℎ1 (ℎ2); the distance between each pair of non-nearest connections
is given by 𝑑1 (green), 𝑑2 (orange), and 𝑑3 (purple). (c) Example of associated dispersion diagram. In-plane modes are marked using gray lines, and out-of-plane modes are marked
using blue lines. The dominant flexural behavior is illustrated by the wave modes obtained at the K and M points (represented using the yellow star and red/green diamonds,
respectively).
All connecting elements present the same width 𝑏. The third nearest
neighbor connection elements do not interact with each other due to a
disalignment imposed between them in the 𝑧 direction.

Details on the 𝑧-coordinate of connection elements are shown in
Fig. 6b, which shows a portion of the unit cell in the 𝑦𝑧 plane. The
mass elements (blue and light yellow) are modeled as cylinders with a
height ℎ𝑚 and diameter 𝑑𝑚, thus allowing the unit cell symmetry to be
manipulated by modulating ℎ𝑚, which may assume different values for
the two masses. Elements performing the nearest (third nearest) neigh-
bor connections have a thickness ℎ1 (ℎ2). Elements associated with the
third nearest neighbor connections are included in pairs, symmetrically
with respect to the 𝑥𝑦 plane and coordinate 𝑧 = 0 (midsurface of gray
elements), at different heights 𝑑1 (green elements, 𝑑1 > ℎ1), 𝑑2 (orange
elements), and 𝑑3 (purple elements, 𝑑3 < ℎ𝑚−2ℎ2). The pairing of these
elements is imposed to ensure symmetry with respect to the 𝑥𝑦-plane
and avoid the coupling between in-plane and out-of-plane motion. The
condition of non-interference between third nearest neighbor elements
is ensured by (𝑑2 − 𝑑1)∕2 > ℎ2 and (𝑑3 − 𝑑2)∕2 > ℎ2. The ratio between
the stiffness of beams which approximate the behavior of nearest (𝑘1)
and third nearest (𝑘2) neighbor elements is theoretically controlled by
the ratio between their thickness according to 𝑘2∕𝑘1 = (1∕4)(ℎ2∕ℎ1)3.

The dispersion relation of the proposed structure can be computed
with the use of finite element analysis, enforcing periodic boundary
conditions at opposing edges of the hexagonal unit cell [18]. As an
example, we consider the following geometrical dimensions: 𝑎 = 20 mm,
ℎ𝑚 = 0.2𝑎, 𝑑𝑚 = 0.1𝑎, 𝑏 = 0.1𝑎, ℎ1 = 0.01𝑎, ℎ2 = ℎ121∕3, 𝑑1 = 0.02𝑎,
𝑑2 = 0.06𝑎, 𝑑3 = 0.10𝑎, and material properties: Young’s modulus 𝐸 =
1 GPa, Poisson’s ratio 𝜈 = 0.3, and specific mass density 𝜌 = 2000 kg∕m3.
The obtained unit cell is meshed using tetrahedral quadratic solid
elements. The dispersion diagram (see Fig. 6c) shows a decoupling
between in-plane modes (gray lines) and out-of-plane modes (blue
lines). The wave modes indicated at the high-symmetry points K and
M (marked using the yellow star and red/green diamonds, respectively)
illustrate the behavior of the unit cell, which propagates flexural waves.
Although these results are preliminary, and additional adjusting must
be implemented due to the considerably more complex interactions
arising at the connections of solid elements, which therefore deviate
from the ideal 𝛥 = 1∕2 condition, these results are indicative of
𝑘
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the feasibility of experimental realization for the observation of the
phenomena described in this work.

6. Conclusions

In conclusion, the topological-related dynamics of a mass–spring
hexagonal lattice with springs connecting both nearest and third near-
est neighboring masses has been investigated. The formation and evo-
lution in the reciprocal space of multiple Dirac cones as the relative
stiffness between the two sets of springs (connecting the nearest and
third nearest masses) is changed has been highlighted. Specifically,
the nucleation of Dirac cones at the M-points have been shown for
𝛥𝑘 = 1∕3, following their merging at the K-points for 𝛥𝑘 = 1∕2. It
has also been found that the multiplicity of Dirac cones remains for
𝛥𝑘 > 1∕2. The computation of the Berry flux for different values of 𝛥𝑘
has elucidated opposite valley Chern numbers for the aforementioned
cones.

The increase in the number of Dirac cones has been shown to lead
to a corresponding increase in the number of topological edge modes
hybridizing and leading to bound modes (i.e., modes ideally capable
of perfect spatial wave confinement) when finite strips are considered
due to symmetry conditions producing a pair of decoupled linear dimer
chains. First observed in the case of only nearest neighbor connections
(𝛥𝑘 = 0), these bound modes were found to be trapped in a frequency
region of bulk modes (revealing, thus, a bound mode in the contin-
uum). Second, connecting the third nearest neighboring masses in the
hexagonal lattice has enabled a frequency shift of the aforementioned
bound modes isolating them inside a frequency band gap. Third, by
varying the stiffness the nonlocal springs normal to the interface, the
odd bound mode frequency can be shifted to an arbitrary value above
a threshold. The existence of these bound modes is guaranteed by
topological arguments, as the adjacent masses transition from moving
in-phase to out-of-phase across the critical 𝛥𝑘 = 1∕2 value. Explicit
expressions have been given for the existence of localized modes at the
interface and their topological origin elucidated.

Finally, numerical simulations on a finite lattice have been con-
ducted to determine the extent of the confinement along the transverse
direction as a wave propagates in a waveguide with sharp turns. The

frequency contents presented by the displacements of masses before
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and after the sharp corners, obtained using a transient analysis, has
suggested a negligible backstattering effect for the case 𝛥𝑘 = 1∕2. A unit
cell considering a solid three-dimensional model was also proposed and
its experimental realization will be part of a future publication.

The concepts presented here using discrete elements can be ex-
tended to continuous systems which leverage bound modes to design
waveguides with superior energy localization.
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